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Abstract

We study the ranging error classification and mitiga-
tion capabilities of machine learning models used in ultra-
wideband systems. This is relevant, as distance estimates in
non-line-of-sight (NLOS) conditions can be off by several
meters, which may severely compromise the performance of
applications that require location awareness. Our ultimate
goal is to optimize the size of a convolutional neural net-
work (CNN) used for classifying and mitigating ranging er-
rors such that it can run on constrained embedded devices
without affecting its performance. To this end, we present an
optimized CNN implementation that, in contrast to resource-
hungry machine learning models requiring hundreds of kB
of memory, can classify and mitigate NLOS conditions with
12kB of RAM and 75 kB of ROM.

1 Motivation and Goals

Ultra-wideband (UWB) technology uses a high band-
width (> 500MHz), which results in a high time resolu-
tion and allows for centimeter-level ranging accuracy [4].
UWRB has become the preferred distance estimation technol-
ogy for indoor localization applications such as asset track-
ing, assisted living, and secure keyless vehicle access. De-
spite the good performance of UWB in standard line-of-
sight (LOS) conditions, where ranging accuracy is typically
within 10 — 20cm, some challenges remain in non-line-of-
sight (NLOS) conditions. In fact, obstacles that attenuate or
block the first (i.e., direct) path can significantly increase the
ranging error by up to a few meters, as the time of flight
(ToF) of the signal is prolonged due to slower propagation in
different materials, or signal reflections. This undesirable ef-
fect is typically tackled in two ways: either via NLOS classi-
fication or mitigation. Classification is used to detect NLOS
conditions and to simply ignore these measurements. This
approach works well when there are multiple nodes to range
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Figure 1. Exemplary CIR for LOS and NLOS conditions.
The first path is delayed and attenuated due to obstacles.

with and erroneous measurements taken in NLOS conditions
can be dropped. The other option is to directly mitigate the
induced ranging error by correcting it. This approach is more
suitable for infrastructures with a limited number of devices,
where no alternative node can be used. Related works [2] use
statistical approaches to detect or mitigate NLOS conditions,
but often require knowledge of the surroundings (e.g., floor
map), or work with a small amount of features (e.g., variance
of range estimates and channel bandwidth). For this reason,
machine learning (ML) approaches are gaining popularity to
find more general solutions using more complex features.

The channel impulse response (CIR) provided by the
UWB nodes can be analyzed to receive insights about the
quality of the ranging estimate. Specifically, the CIR shows
the amplitudes over time of the first path of the signal pulse
and all its reflections (i.e., multi-paths), as shown in Fig. 1.
With the help of ML models, the information extracted from
the CIR can be used to classify or mitigate NLOS condi-
tions. CNNs are the neural network of choice when dealing
with spatially-independent data (e.g., objects in images or
amplitude positions in audio), and have grown in popularity
to classify or mitigate NLOS conditions based on informa-
tion extracted from the CIR [1]. CNNs can automatically ex-
tract spatial features from the data while reducing the overall
complexity by alternating convolutional layers (feature ex-
tractions) and average or maximum pooling layers (average
or maximum of a pool of nodes).

Bringing CNNs to constrained embedded platforms. Un-
fortunately, ML models, especially CNNs, tend to be
resource-hungry and computationally expensive. They typ-
ically do not run on constrained embedded devices such as
the popular UWB node MDEK1001', which embeds 32 kB
of RAM and 256 kB of flash memory. We study how to
adapt an exemplary CNN, called REMNet [5], to fit on an
MDEKT1001, while still achieving adequate performance.
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2 Optimized REMNet Implementations

REMNet [5] is a regression model that predicts the rang-
ing error and uses the latter to correct the ranging estimate.

Baseline. We create a REMNet baseline implementation by
combining the classification approach presented by Bregar et
al. [3] with the REMNet regression solution proposed by An-
garano et al. [5], and by changing the REMNet output layer
to also perform classification. We use both REMNet models
to perform classification and regression and refer to it as C&R.
We also adapt the REMNet to be a multi-output network that
can perform classification and regression simultaneously; we
will refer to it as MO. This multi-output REMNet has two out-
put neurons: one returning the predicted error, and the other
classifying the measurement as LOS or NLOS. Therefore,
only one model is needed instead of two separate ones. To
practically build lightweight models, we use the TensorFlow
Light library for microcontrollers, which provides the basic
set of functionalities to implement neural networks. We ad-
just some layers of the REMNet to be compliant with the
library and provide CIRs with 152 samples as input, starting
10 samples before the detected first path, as shown in Fig. 1.
We will refer to these models as the baseline.

Full integer quantization. To reduce the memory require-
ments and computation time, we use full integer quantiza-
tion, i.e., we only use integer values for all the model’s inter-
nal calculations. We will refer to these models as quantized.

Model optimization. Based on the quantized models, we
perform a grid search with different hyperparameters to eval-
uate the performance on even smaller models (which we will
call optimized). We consider as hyperparameters: the CIR
length provided as an input (L), the number of residual re-
duction modules that extract features and reduce the dimen-
sionality of the data (N), and the number of filters applied in
each layer to extract features (F).

3 Preliminary Evaluation

We evaluate our optimized REMNet implementations and
compare their performance with that of the baseline C&R and
MO models. We use the dataset by Stocker et al. [4], contain-
ing measurements from 749 settings with 50 traces each.

Dataset. We divide the settings into two groups: the first
one consists of LOS traces recorded without any obstacles
between devices. The second group consists of NLOS traces
with either small ranging errors of a couple of decimeters
(mostly from smaller obstacles) or large ranging errors of a
couple of meters (mostly from walls). In our evaluation, we
select a uniformly-distributed set of LOS and NLOS traces
to avoid bias. Our results are obtained by performing k-fold
cross validation with three folds and by repeating this proce-
dure 3 times with a newly-shuffled dataset.

Performance metrics. We quantify the performance of the
optimized models with three metrics. The F1 score in the
range 0—1 defines how well the classification models classify
new data (with 1 being the best value). The R? score defines
how well the regression models’ error prediction matches the
true ranging error (the perfect score would have a value of
one, but it can be arbitrarily worse). The model size con-
siders the classification and regression TFLite micro-models

Table 1. Performance of baseline and optimized models.
Type \ L N \ F1 score R? score Model size

Baseline 152 3 0.77 0.05 (+£0.23 39 kB
MO  Quantized | 152 0.76 0.04 (+£0.29 27 kB
Optimized | 152 0.75 0.13 (£0.17 14 kB
Optimized | 32 0.76 0.25 (£0.09 12 kB
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Baseline 152 3 0.76 0.26 (£0.12) 76 kB
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C&R  Quantized | 152 0.76 0.28 (+0.17 52 kB
Optimized | 152 0.72 0.29 (+0.08 24 kB
Optimized | 32 0.75 0.13 (+0.36 23 kB

combined, and roughly corresponds to the RAM footprint.

Results. Table 1 illustrates our results: the quantized model
alone already reduces the model size by 30%, while main-
taining similar R?- and F1-scores. The performed grid search
shows that the hyperparameter F should not be reduced, as
the R?-score decreases on average by 40% and 90% for
F =8 and F = 4, respectively, and is therefore kept con-
stant. Reducing the hyperparameter N further reduces the
quantized model size by about 50% without affecting the
Fl-score, while actually improving the R>-score. We be-
lieve that higher N values cause overfitting during regres-
sion, which leads to a high standard deviation and a worse
R?-score. The reduced CIR length hyperparameter has a pos-
itive effect on the MO model, by greatly reducing the standard
deviation and increasing the mean of the R?>-score. We also
quantify the ROM usage of the proposed models, and ob-
serve a ROM footprint of 237, 164, and 75 kB for MO base-
line, quantized, and optimized models (N=1, L=32), respec-
tively. The ROM footprint for the C&R baseline, quantized,
and optimized models (N=1, L=32) is 452, 317, and 139kB,
respectively.

4 Conclusion and Outlook

We can reduce the model size of classification and regres-
sion CNNs by up to 65% thanks to full integer quantization
and other hyperparameter optimizations, while still achiev-
ing a similar prediction performance. The models fit on em-
bedded devices with less than 32 kB of RAM. In future work,
we plan to run our solution directly on the MDEK1001 UWB
platform, and to explore and compare other ML models.
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