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Abstract
This paper presents RSSISPY, a software module that en-

ables continuous RSSI measurements with very high time
resolution on standard low-power wireless network nodes.
Specifically, RSSISPY can be used to perform continuous
RSSI sampling in parallel to normal Bluetooth Low Energy
(BLE) receive operation on Nordic nRF52840 devices with a
sampling rate of 1 Msps, i.e., one sample per bit in BLE 1M
mode. RSSISPY provides this functionality without additional
hardware and can be straightforwardly integrated into existing
protocols, so it allows to record RSSI traces “in the wild”,
i.e., in existing networks running the protocols of interest. We
use RSSISPY to further investigate important physical layer
effects on COTS hardware, including interference in general,
capture effect, and so-called constructive interference. Our
systematic experiments combined with rigorous analyses un-
cover results that have not been known so far and are of high
interest for concurrent-transmissions-based protocols. Be-
sides that, RSSISPY enables all kinds of RSSI-stream-based
functionality on standard hardware, e.g., signal detection,
parameter estimation (instantaneous SNR, transmitter con-
stellation, etc.), and cross-technology communication.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network

Architecture and Design—wireless communication; C.4
[Performance of Systems]: measurement techniques

General Terms
Design, Experimentation, Measurement

Keywords
Bluetooth (BLE), RSSI Measurement, Synchronous Trans-

missions, Capture Effect, Cross-Technology Communication

1 Introduction
In an era of automation and digitalization in critical do-

mains (manufacturing, medicine, etc.), ensuring the depend-

ability of low-power wireless communication solutions is a
key concern. In response, the EWSN Dependability Competi-
tion provided a forum for teams from academia and industry
to compare the dependability of their low-power wireless
protocols in the presence of significant environment dynam-
ics [9]. Solutions based on synchronous transmissions (ST)
routinely took up the first three places in the competition.
Meanwhile, ST have also been exploited to provide formal
functional guarantees that were previously only known from
wired communication systems [24].

Despite over a decade of research, however, the foundation
of these protocols—the concept of ST—is still not well under-
stood. Regarding the selected physical layer, what is it that
enables a commodity low-power wireless radio to receive (or
not receive) a packet despite the interference caused by ST?
What is the impact of the modulation scheme, the senders’
and receiver’s hardware implementation, and the properties
of the wireless channel? While progress on these and other
questions has been made, conclusive answers backed up by a
combination of rigorous analyses and systematic experiments
are still being sought. Without such answers, the societal
acceptance of low-power wireless technology for mission-
and safety-critical applications is at stake.

As discussed in Sec. 2, there is a significant gap between
theoretical results on one hand and practical experiments on
the other. It turns out that theoretical models and simulations
tend to miss important aspects of real technology, particularly
of the commercial off-the-shelf (COTS) devices used in real
applications. Consequently, there is a substantial need for
validating experiments on the real target, i.e., using the exact
same radio hardware (and antenna position) to “look through
the device’s eyes”. However, COTS devices come along with
limited information about architectural details and missing
access to internal signals, which makes such experiments
difficult and hinders the interpretation of observed results.
What is missing is a method to deeply inspect synchronous
transmissions “in the wild”, i.e., in the target environment,
on the deployed COTS devices, without relying on additional
hardware, and (ideally) executing the application of interest.
Contribution and roadmap. To reduce this gap, we present
RSSISPY, a software module that allows to gain insights into
ST that have not been possible before. RSSISPY, running on
standard nRF52840 devices in BLE mode, adds continuous
receive signal strength indicator (RSSI) sampling to existing
packet reception routines and—as the first solution of this



kind—provides bit-level time resolution by supporting sample
rates up to 1 Msps. Thus, incorporating RSSISPY into existing
protocols not only allows to perform joined bit error and RSSI
analysis “in the wild”, it also provides a level of detail on
commodity devices that has been unseen so far.

We present the details of RSSISPY in Sec. 3 and use it in
Sec. 4 to investigate ST. The power of RSSISPY allows us
to dissect the nature of physical-layer effects in an unprece-
dented way, which provides new insights and inspires new
ideas. For instance, regarding the capture effect we not only
find that the capture window is longer than expected, but that
it can even be extended to an arbitrary length.

For each experiment, we deduce our expectations based
on rigorous analytical considerations and discuss the relation
to our empirical results. One important issue is the beating
pattern that results from the carrier frequency offsets (CFOs)
of multiple synchronous transmitters. In Sec. 4.5.1 we ana-
lytically derive the shape of this pattern for the general case
of arbitrary many transmitters. This contribution generalizes
existing analytical results, which focus only on the special
case of two transmitters [17, 7]. We discuss other aspects of
RSSISPY in Sec. 5 and conclude in Sec. 6. In summary, this
paper contributes

• RSSISPY, a software tool1 that enables new ways to in-
vestigate CT in the target environment by providing RSSI
sampling with bit-level time resolution on COTS devices

• new results on physical layer effects that are of high inter-
est for CT-based protocols.

2 Background and Related Work
At its core, RSSISPY is a tool for continuous high-

resolution RSSI sampling on low-power COTS devices. Con-
tinuous RSSI sampling (CRS) is beyond the scope of typical
protocol stacks, where RSSI measurements are performed
only once per packet (if at all). However, it is popular in
cross-technology communication (CTC), as it is one of the
enablers in this field [13]. For example, CRS-based CTC has
been implemented on low-power devices in [10, 15, 14, 12].
Unfortunately, none of these solutions reaches sample rates
above 50 kHz, while RSSISPY provides 1 MHz—a 20 times
improvement over the state of the art.

In this paper, we use RSSISPY for an in-depth inspection
of concurrent transmissions (CT) in BLE networks. CT is a
communication technique that lets multiple nodes transmit
packets at the same time, i.e., overlapping or even simulta-
neously (symbol-synchronous). The latter is referred to as
synchronous transmissions. In the last ten years it has been
shown that CT is particularly efficient in low-power wireless
multi-hop networks, and the pioneering work of Glossy [11]
triggered the exploitation of CT in a variety of protocol de-
signs (an extensive survey can be found in [24]).

The benefit of CT has been attributed to the capture ef-
fect and, in case of ST, to constructive interference (CI) (we
discuss the details in Sec. 4). Both effects have been inves-
tigated in practical experiments [23, 17, 18, 8] as well as in
simulations [21, 16, 8] and—to a limited extent—analytically
[21, 22, 7]. However, overlooking or omitting important de-
tails on both sides has lead to inconsistent interpretations

1The source code is available at https://gitlab.com/nes- lab/rssispy .

regarding ST, and over time a controversy on the “full truth”
arose [22, 17, 16, 18]. Today it is known that the unavoidable
CFO between multiple transmitters is one of the critical fac-
tors [17, 16, 8, 7], which went unnoticed in the early days.
Probably there are more crucial details that are unknown
so far (e.g., regarding the precise modulation schemes and
demodulator architectures).

RSSISPY is a software tool that grants access to the contin-
uous RSSI signal on COTS devices, which is most interesting
for the investigation of CFO effects and CT in general and has
been out of reach so far. The value of RSSISPY is highlighted
by the unprecedented results in Sec. 4, which, hopefully, in-
spire and push further research in this area. Besides that,
we believe that practical and theoretical work must be con-
solidated in a more stringent way. To this end, we align all
our experiments with a consistent mathematical derivation.
One advantage of this combined approach is demonstrated
in Sec. 4.5.3, where it prevents a misinterpretation of our
experimental results.
3 RSSISPY in Detail

In this section we present the internal details of RSSISPY.
We first introduce nRF52840’s hardware support for reading
single RSSI samples and discuss how it could be combined
with other peripheral modules to implement continuous sam-
pling (Sec. 3.1). We then consider the timing of this concept
and analyze all uncertainty factors that must be taken into
account for a reliable operation. This requires an in-depth dis-
cussion of the relevant hardware details (Sec. 3.2) and reveals
that establishing a 1 MHz sample rate is remarkably challeng-
ing (Sec. 3.3). We unfold the internal design of RSSISPY in
Sec. 3.4 and explain how it overcomes all challenges.

3.1 Basic Operation and Timing
The nRF52840 radio peripheral implements a simple mech-

anism for measuring RSSI values [6]. Internally, the RSSI
signal is measured continuously and passed through a low-
pass filter. The output value of this filter can be sampled on
demand by triggering the RSSISTART task. After a sampling
period TS the RSSIEND event is generated and the sampled
value can be read from the RSSISAMPLE register.

Continuous sampling can be realized by connecting a timer
peripheral’s COMPARE event to the RSSISTART task via
nRF52840’s Programmable Peripheral Interconnect (PPI) [6].
Essentially, the PPI is a configurable interconnect matrix that
allows to route event signals between different peripheral
units, so events of one peripheral can trigger tasks of other
peripherals without CPU interruption. In spite of that, the
CPU is needed to read each RSSI sample from the RSSISAM-
PLE register and write it to a circular buffer. To this end,
an obvious solution is to generate a radio interrupt on each
RSSIEVENT and move the data within the corresponding in-
terrupt service routine (ISR). The CPU of the nRF52840 con-
sists of an ARM Cortex-M4F core running with a frequency
of 64 MHz. Targeting an RSSI sampling rate of 1 MHz there
are 64 CPU clock cycles to generate and process each sample.

Figure 1 illustrates this straightforward implementation.
Unlike the CPU, the peripheral subsystem of the nRF52840
is driven by a 16 MHz clock (PCLK16M). Timer 1 is used as
sample clock and generates a COMPARE event every 1 µs.
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Figure 1: Naive implementation of continuous RSSI sampling
on the nRF52840.

The event is routed to the RSSISTART task via the PPI, which
introduces a fixed delay of 1 PCLK16M = 4 CPU clock cycles.
The sampling period TS is specified as typically 0.25 µs = 16
CPU clock cycles in [6]. However, in all our experiments the
RSSIEND event appeared with a constant delay of 4 cycles
(1 PCLK16M cycle), so we assume this is the right value. The
ISR execution time can be divided into the exception entry
delay (aka interrupt latency), the execution time of the ISR
itself, and the exception return delay.

Among others, the ISR contains a load instruction that
reads the RSSISAMPLE register. Ensuring that this instruc-
tion is always executed at the right time, i.e., after sampling
of the current value has finished and before the next sampling
cycle gets started, is key for a reliable operation. What sounds
not that difficult in the first place reveals itself as a signifi-
cant challenge when looking closer. To understand this, we
must dive into the exception handling and timing details of
the ARM Cortex-M4F core as well as the peripheral register
access timing of the nRF52840.
3.2 nRF52840 Architecture Details
3.2.1 ARMv7-M Exception Handling

The Cortex-M4F processor core [2, 4] implements the
microcontroller profile of ARM’s version 7 architecture
(ARMv7-M) [5], which contains a Nested Vectored Interrupt
Controller (NVIC). The NVIC is closely coupled with the
core’s exception handling, and in combination both provide
some special features that are very important for RSSISPY.

As a starting ground, the NVIC comes with programmable
interrupt priority levels and hardware support for context save
and restore. When there is a pending interrupt request (IRQ)
with sufficient priority (for the moment let us assume that
there is no other IRQ), then the program flow gets interrupted
and exception handling begins. The processor pushes context
information (machine state, program counter, etc.) onto the
stack, which is referred to as stacking. In parallel (ideally),
the processor reads the ISR’s start address from the exception
vector table and fetches the first instructions to feed the CPU
pipeline. After stacking has finished, the processor starts
executing the ISR. At the end of the ISR the processor initiates
an exception return sequence. It restores the saved context
from the stack and, in parallel, fetches the next instructions
of the interrupted program.

Under ideal conditions there is a maximum of a 12 cycle
latency from asserting the IRQ to execution of the first ISR
instruction and a 10 cycle latency for the return sequence [2].
This is reachable if (i) the memory subsystem provides opti-
mal performance, i.e., congestion-free full parallel instruction
and data busses without any interlocks or wait states, and (ii)
the processor does not stack additional context information

for a floating point unit (FPU). The Cortex-M4F has an FPU,
so (ii) must be taken into account. Otherwise, the latencies
increase to 29 and 27 cycles for entry and return, respectively.

When a higher priority IRQ arrives while an exception
is being handled, then the new exception preempts the orig-
inal exception. The processor’s advanced features make it
necessary to distinguish three cases here. (i) If the IRQ is
asserted while the ISR is running, i.e., between the entry and
return sequence of the original exception, then the latencies
for the new exception are as discussed above. (ii) If the IRQ
is asserted during the entry sequence of the first exception,
then late-arrival handling reduces the entry latency of the
new exception by a variable number of cycles.2 (iii) If the
IRQ is asserted during the return sequence of the first excep-
tion, then tail-chaining reduces the entry latency of the new
exception to 6 cycles. We omit a detailed discussion of these
advanced features, the interested reader is refered to [4, 5].3
An important consequence for RSSISPY is that we have to
cope with significantly fluctuating entry and exit latencies.
3.2.2 nRF52840 Peripheral Access Timing

The connection between the Cortex-M4 core and the pe-
ripheral units is organized memory-mapped, i.e., the CPU
uses standard load and store instructions to read and write
peripheral registers. In the nRF52840 such memory trans-
fers pass an AHB multilayer interconnect and an AHB2APB
bus bridge [6]. While the CPU core runs with 64 MHz, the
Advanced Peripheral Bus (APB) is clocked by PCLK16M,
which slows down accesses significantly. The nRF52840 man-
ual [6] does not provide much information about this topic, so
we implemented a number of micro benchmarks to determine
the peripheral load/store timing. Our findings are as follows.

• Each peripheral access is synchronized to PCLK16M.
Hence, depending on the current phase relation between
the instruction stream and PCLK16M, there is a synchro-
nization delay of 0 . . .3 CPU clock cycles.

• Peripheral accesses take 2 PCLK16M cycles, which
translates into 8 wait states at the CPU side.

• Peripheral loads are not pipelined with other loads (dif-
ferent from normal loads).

• Peripheral stores use the CPU core’s one-entry write
buffer (as normal stores do).

• Peripheral accesses are not interruptable.

In consequence, a load from a peripheral register takes be-
tween 10 and 13 CPU clock cycles, while a store blocks
consecutive accesses for 11 to 14 cycles. Further, peripheral
accesses can increase the interrupt latency by up to 13 cycles.
3.3 Challenges

In the face of the hardware details discussed above, it
is easy to understand that regarding the design of RSSISPY

2The exact minimum latency is unclear [1]. Due to the vector fetch it
must be at least 2. We guess it is 6, the same as with tail-chaining.

3Both mechanisms exploit the fact that the context to be saved is inde-
pendent of the taken exception, only the vector table fetch must be adopted.
Hence, the outcome of a stacking operation can be used to take a different
(late-arriving) exception than originally planed, and a stacked context can be
reused to take another exception without initiating a new stacking operation.
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Figure 2: RSSISPY’s architecture. The gray part realizes
RSSI sampling, the other blocks form the monitoring system.
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almost everything is about timing. To reliably record a RSSI
sample every 64 CPU clock cycles,

(C1) The exception handling and memory subsystems must
be used most efficiently, i.e., without any bus congestion
or FPU context stacking.

(C2) Apart from inevitable wait states, the ISR must perform
all operations in only a few CPU clock cycles. Excep-
tion entry, return, IRQ acknowledgment (a peripheral
store), and RSSISAMPLE reading (a peripheral load)
can consume up to 62 of the 64 clock cycles, so the re-
maining operations—which include address generation
and circular buffer handling—must be extremely fast.

(C3) In addition to (C2), the implementation must ensure that
fluctuating interrupt latencies caused by tail-chaining
and late-arrival handling cannot shift the RSSISAMPLE
read operation out of the tolerable time frame.

Besides those strictly timing-related challenges, there are also
some functional aspects.

(C4) Since the circular buffer can overflow, the implementa-
tion must provide a timestamp that indicates the temporal
placement of the buffered samples.

(C5) We support the integration of RSSISPY into other
projects, and human integrators can make mistakes (e.g.,
set wrong interrupt priorities). Therefore, the implemen-
tation should be able to detect invalid or missed samples.

(C4) and (C5) would be easy if the ISR could generate times-
tamps for each sample, but this is impossible due to (C2), as
reading a timer value corresponds to another peripheral load
and takes way too long. Hence, the functionality must be
established outside of the CPU core, which makes it tricky.

3.4 Implementation
In the following we focus on RSSISPY’s core, wich con-

sists of an RSSI sampling ISR surrounded by an arrangement
of peripheral units, the latter being connected via several PPI
channels (Fig. 2). This core is complemented by appropriate
data structures, initialization routines, etc., which we skip
here. We also omit details regarding graceful start and stop
mechanisms, temperature compensation, and pre- and post-
trigger functionality used in our experiments (Sec. 4). Before
we discuss Fig. 2 in detail, we address (C1).

Listing 1: RSSISPY’s sampling ISR
1 m o v . w r0 , # 0 x 4 0 0 0 0 0 0 0
2 a d d . w r3 , r0 , # < T I M E R >
3 m o v w . w r2 , # < B U F F E R [ 0 : 1 5 ] >
4 s t r . w r0 , [ r3 , # < T I M E R _ E V E N T > ]
5 m o v t . w r2 , # < B U F F E R [ 1 6 : 3 1 ] >
6 a d d . w r0 , r0 , # < R A D I O >
7 l d r . w r3 , [ r2 , # < N U M _ W R I T T E N _ O F F S E T > ]
8 a d d . w r1 2 , r3 , # 1
9 s t r . w r1 2 , [ r2 , # < N U M _ W R I T T E N _ O F F S E T > ]

10 b f c . w r3 , # < B U F _ S I Z E > , # < 3 2 - B U F _ S I Z E >
11 l d r r0 , [ r0 , # < R S S I S A M P L E > ]
12 s t r b r0 , [ r2 , r3 , l s l # 0 ]
13 b x l r

3.4.1 Optimized Memory Access and Lazy Stacking
In a typical nRF52840 application the machine code runs

directly from flash memory. However, executing code from
flash comes with a wait state penalty [6], so this is not an
option for the RSSISPY ISR, which must accordingly run
from RAM. This, in turn, has a pitfall, because the shortest
interrupt latency can only be achieved if the vector and in-
struction fetches can be parallelized with stacking. To solve
this, we make use of nRF52840’s multilayer interconnect and
split an 8 kB section from the data RAM to have it available
for fast instruction fetches. We omit the details here, the split
is realized via the linker script and also includes address range
overlays to assign critical accesses to different busses and en-
sure that they get parallelized. We also relocate the exception
vector table to this RAM section to ensure maximum vector
fetch performance.

Straightforwardly extending the exception handling dis-
cussed in Sec. 3.2.1 to FPU-equipped processors would re-
quire to save the FPU context with each exception. The
Cortex-M4F implements special (optional) features that aim
at circumventing this expensive step, among others so-called
Lazy Stacking. Due to space constraints we cannot go into
the details here, the interested reader is referred to [5, 3]. In
essence, lazy stacking allows to defer stacking until an FPU
instruction is executed. We enable this feature and exploit
it by combining two things: RSSISPY’s IRQ is the highest
priority IRQ in the system, and the ISR is written in pure
assembly code (Listing 1), so it is known for sure that it does
not use FPU instructions. Consequently, stacking will never
occur while the exception is active, which effectively avoids
extended entry and return latencies.
3.4.2 Fast RSSI Sampling

Timer 1 generates the sample clock. It implements a 4 bit
counter and generates a COMPARE event at every wrap-
around, which is connected to the RSSISTART task via the
PPI. In favor of RSSIEND (as in Sec. 3.1), we use a second
compare register of Timer 1 to trigger the sampling IRQ.
This enables us to shift the IRQ relative to RSSIEND (i.e., to
pre- or post-trigger the ISR) and thereby—targeting (C3)—to
place the RSSISAMPLE read instruction in a safe time frame.

The sampling ISR is shown in Listing 1. To gain the
maximum performance, three instructions (lines 3, 5, and
10) are updated at runtime to adopt the intended destination
buffer (once before sampling is started), which is possible



because the ISR is placed in RAM (Sec. 3.4.1). The ISR
works as follows. First, it computes needed pointers (lines
1–6) and acknowledges the IRQ (line 4). The peripheral store
is expensive, however, due to the core’s write buffer it gets
decoupled and the execution up to line 7 continues in parallel.
Register r2 refers to a buffer structure of the form

struct R s s i _ B u f f e r {
. . . // header data
u i n t 3 2 _ t n u m _ s a m p l e s _ w r i t t e n ;
. . . // more header data
u i n t 8 _ t s a m p l e s [ ] ;

} ;

and contains a pointer to the samples member. The instruction
in line 7 loads the field num_samples_written from the structure,
where <NUM_WRITTEN_OFFSET> equals to offsetof(Rssi_Buffer,

num_samples_written) - offsetof(Rssi_Buffer, samples). The
field is incremented and written back (lines 8–9), before its
original value is masked with sizeof(samples) - 1 in line 10
(setting <BUF_SIZE> = MSB(sizeof(samples))). The latter corre-
sponds to a modulo operation if sizeof(samples) is a power of
2 and realizes a very fast circular buffer indexing mechanism
including wrap-around handling. The result is used as a regis-
ter offset in line 12 to store the RSSI sample loaded in line 11
to the right buffer position. Line 13 initiates the exception
return sequence. We want to emphasize the circular buffer
handling concept, which uses num_written (nw) and num_read

(nr) counters instead of classic read and write pointers. Be-
sides its efficiency, this allows to implement the writer (i.e.,
the ISR) without overflow handling, as the latter can be done
on the reader side as follows (bufsize = sizeof(samples)).

n r = ( n w < b u f s i z e ) ? 0 : n w - b u f s i z e ;
// printf("%u samples lost\n", nr);
while ( n r ! = n w )

d a t a = s a m p l e s [ n r + + & ( b u f s i z e - 1 ) ] ;

Based on the ISR assembly code and considering all re-
lated details (including the core’s instruction pipeline char-
acteristics), we determined cycle-accurate execution times
of all ISR parts. The results are illustrated in Fig. 2. As a
side effect, our in-depth analysis enabled us to arrange the
machine instructions such that the peripheral load in line 10
gets executed as fast as possible (compare Sec. 3.2.2).4 With
normal entry and exit latencies the read operation starts 32–35
cycles after the IRQ, and overall the exception handling takes
53–56 cycles. In the worst-case the exception handling seems
to take 69 cycles, i.e., it seemingly exceeds the available
64 cycles. In such cases we exploit the processor’s advanced
exception handling features. The next IRQ, which then over-
laps the return phase of the first exception, triggers late-arrival
handling. Consequently, the context unstacking is aborted,
re-stacking is skipped, and the second ISR starts not later than
6 cycles after the second IRQ. So in sum it takes not more
than 64+6+44 = 114 < 128 cycles to handle both IRQs.

Overall, our sampling concept effectively overcomes (C2)
and (C3), provided that the sampling IRQ is configured to
have the highest priority, and that interrupts do never get
globally disabled while sampling is active. The latter can be

4The key is that the peripheral store in line 4, which has an uncertainty of
3 cycles, implicitly synchronizes the instruction stream with PCLK16M.

achieved easily by using the core register BASEPRI instead
of PRIMASK to implement interrupt locks.
3.4.3 Zero-Load ISR Monitoring

As discussed in Sec. 3.3 and underlined by Sec. 3.4.2,
there is no chance to integrate timestamping or monitoring
functionality into the ISR. Hence, we use additional periph-
eral units for this purpose, as shown in Fig. 2. We first focus
on (C5), as (C4) can be handled easily afterwards.

Marking individual samples as invalid or missing would
require ISR support, so this is impossible. However, such
samples should not occur in a properly configured system, and
their appearance can be rated as the exceptional case. There-
fore, it is enough to detect if any sample in a recorded block
is invalid or missing (declaring the block as not trustworthy).

To this end, we make use of the nRF52840’s Memory
Watch Unit (MWU). The MWU is a special peripheral tightly
coupled to the CPU that can be used to generate peripheral
events whenever the CPU accesses specified memory regions.
We exploit this capability to monitor the timing of the load in-
struction in line 11 (Listing 1) in each ISR execution. Specifi-
cally, the load must take place when the internal count register
of Timer 2 is inside the half-open interval delimited by the
compare registers C1 and C2 (Fig. 2). We call it a late readout
if the timer value passes C2. A late readout in a recording
can be detected easily by checking the event flag that belongs
to C2 after recording has been stopped. On the other hand,
not passing C1 is referred to as an early readout, which can
indicate an internal misconfiguration (Timer 1 triggers the
IRQ too early). Detecting early readouts is more tricky, as the
event flag does not help here. At the beginning of the mea-
surement we capture the time when Timer 1 gets started, t0,
in the main clock Timer 4 (not shown in Fig. 2). Further, we
capture the timestamp of each RSSIEND event in Timer 4, so
after stopping this value provides the timestamp of the last
sample, tN . The difference between t0 and tN indicates the ex-
pected number of samples N, i.e., the number of samples that
should have been recorded. Now, we route the COMPARE
event attached to C1 to Timer 3. This timer runs in counter
mode and counts how often Timer 2 passed C1. If Timer 3
does not equal N, then there have been early readouts.

As a side effect, after recording has been stopped the
difference between N and num_samples_written (Sec. 3.4.2)
indicates the number of missed samples. Further, if there
have been neither early nor late readouts we can reliably
compute the timestamp of each recorded sample backwards
from tN , which effectively overcomes (C4).

4 RSSISPY in Action
To demonstrate the utility of RSSISPY, we use it to inves-

tigate physical layer effects that appear in the presence of CT.
In particular, besides the influence of interference in general,
we elaborate on the capture effect and so-called constructive
interference. Our goal is to dissect the inner nature of these
effects. To this end, we conduct controlled experiments that
systematically provoke critical situations and use RSSISPY
to add high-rate RSSI measurements to the recorded packets.
This enables us to present results with a level of detail that
has been unseen so far on COTS hardware, which is of high
interest for CT-based protocols. Before we dive into the ex-



periments, we derive the fundamental mathematical relations
to be able to deduce our expectations before each experiment
and compare them with the empirical results.

4.1 A Primer on Radio Channel Modeling
In general, a modulated radio transmit signal can be ex-

pressed as [19]

s(t) = a(t)cos(2π fc,T t +φ(t)) (1)

Here, fc,T is the transmitter’s carrier frequency, and a and φ

denote amplitude and phase modulation functions that repro-
duce the used modulation scheme. For example, in amplitude
shift keying φ(t) is constant and a(t) equals the amplitude
that represents the symbol transmitted at time t. In simple
frequency shift keying (FSK) variants a(t) is constant and
φ(t) = 2π fi t, where fi is the frequency representing symbol i.

To ease analysis, it is common to interpret s(t) as the
real part of a complex signal, more specifically of a com-
plex carrier ej2π fc,T t modulated by a complex envelope u(t) =
a(t)ejφ(t), i.e., s(t) = Re

(
u(t)ej2π fc,T t

)
. Further, denoting the

real and imaginary parts of u(t) by I(t) and Q(t), respectively,
s(t) can be rewritten as [19]

s(t) = I(t)cos(2π fc,T t)−Q(t)sin(2π fc,T t) (2)

which represents the functionality of an IQ upconverter found
in many modern radio implementations.5 Its counterpart at the
receiver, the downconverter, performs the similar operation

v(t) = r(t)cos(2π fc,Rt)− j r(t)sin(2π fc,Rt) (3)

to extract the complex envelope v from the receive signal r.
In the simplest model, r is an attenuated and time-shifted

version of s, i.e.,

r(t) = |h|s(t − τ) (4)

with |h|< 1 denoting the gain (attenuation) of the link and τ

the overall delay due to time-of-flight, transmitter latency, etc..
It is straightforward to show that under this model, with v
passing an appropriate low-pass filter, (3) can be rewritten as

v(t) = 0.5 |h|u(t − τ)ej(2π( fc,T − fc,R)t+φ0,T−φ0,R)

= 0.5 |h|u(t − τ)ej∆φ0ej2π∆ fct (5)

where ∆ fc = fc,T − fc,R denotes the carrier frequency offset
(CFO) between sender and receiver, and ∆φ0 = φ0,T − φ0,R
denotes the phase difference. φ0,T includes the initial phase of
the transmitter’s oscillator, the delay-induced portion e−j2π fcτ ,
and potential phase shifts resulting from the wireless channel
(e.g., caused by reflections). Since we are only interested in
the resulting phase difference relative to the receiver, we can
neglect those details and merge all time-independent parts
into a complex channel coefficient h, leading to

v(t) = hu(t − τ)ej2π∆ fct (6)

5Though, this analysis does not require that the transmitter and receiver
use IQ conversion, the signals s and r can be generated and processed
in different technical ways. Instead, the analysis is meaningful because
eventually all realizations lead to signals as in (1), and the wireless channel
is independent of the used (de-)modulator technology.

The goal of a receiver is the demodulation of u (i.e., the
reconstruction of the information encoded therein). As an
intermediate step, a straightforward receiver tries to recon-
struct u(t) from (6) by (i) estimating and compensating for |h|,
which is known as Automatic Gain Control (AGC), (ii) elimi-
nating the exponential term by synchronizing fc,R with fc,T
in order to approach ∆ fc = 0, and (iii) estimating and com-
pensating for arg(h) and τ in a modulation-specific way.

When N nodes transmit concurrently, the received signal
is a superposition of the transmitted signals with individual
gains and delays for each path, i.e.,

r(t) =
N

∑
k=1

|hk|sk(t − τk) (7)

We can derive the downconverted receive signal v by inserting
(7) into (3) and rearranging the addends, which leads to

v(t) = ∑
k

|hk|
(

sk(t−τk)cos(2π fc,Rt)−jsk(t−τk)sin(2π fc,Rt)
)︸ ︷︷ ︸

(3),(4)
= vk(t)

(6)
=

N

∑
k=1

hkuk(t − τk)ej2π∆ fc,kt (8)

Obviously, v is a superposition of (6), i.e., a linear combina-
tion of individually attenuated and delayed transmit signals
uk, where each of them is mixed with a residual frequency
∆ fc,k = fc,k − fc,R . The latter makes an important differ-
ence compared to the single-transmitter case N = 1 because
the receiver—which is not aware of multiple transmitters—
cannot eliminate different ∆ fc,k values with only a single
parameter fc,R . This holds even if all senders transmit the
same signal uk = u with the same delay τk = τ, as ST-based
protocols try to do. We will come back to this in Sec. 4.5.

4.2 Experimental Setup
We perform all experiments on FlockLab [20]. FlockLab

is an open static testbed, which makes it easier to reproduce
our results (though link qualities still fluctuate). The usage of
such standard deployments is only possible because RSSISPY
(i) does not rely on additional hardware, and (ii) targets a
device that is widely used in established testbeds. Every
experiment is performed with an appropriate subset of nodes
that contains interesting link constellations for the particular
experiment. Figure 3 provides an overview of the testbed and
all used nodes. We use BLE 1M mode with center frequencies
of 2401 MHz and 2483 MHz, which are close to the corners
of the ISM band and contain little external interference.

For our experiments we embed RSSISPY into a test ap-
plication that performs the required transmit and receive op-
erations at each node following a fixed schedule. The latter
makes it easy to provoke the situations of interest as well as to
estimate the oscillator drift of each node and to synchronize
their clocks based on packet reception timestamps. The ap-
plication logs each transmitted and received packet together
with the sampled RSSI data. We use this data to detect bit
errors and generate plots that show the RSSI level alongside
the received bitstream.

To illustrate the basic functionality, Fig. 4a shows the
reception of a short BLE packet sent by node 2 and received
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Figure 4: RSSISPY in action. (a) Output of node 1 while receiving a packet from node 2 with parallel
running RSSISPY ( fc = 2401 MHz). The BLE link layer packet consists of 8 bit Preamble, 32 bit
Access Address, 7 byte PDU, and 24 bit CRC. The preamble and address bits are shown with value 0.5
because we can only make assumptions about their real values.6 The PDU bytes (00 05 01 02
03 04 FF) are transmitted LSB-first, the second PDU byte is the length field. (b) RSSISPY output at
node 1 while node 2 transmits a pure unmodulated carrier signal. The signal does not form a valid
packet or synchronization sequence (preamble + address), so the receiver outputs no bitstream.
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Figure 5: Destructively interfering transmissions. Bit errors are highlighted in red. x marks transmit activity at node x.
(a) Transmissions of nodes 7 and 24 arriving at node 3 ( fc = 2483 MHz). The receive power of node 24 is about 7x (8.5 dB)
higher compared to node 7. The weak signal does not disturb a running reception of the strong packet [@10000 µs], but if the
strong signal appears in the middle of a weak packet [@7500 µs] it inhibits successful reception. (b) Zoom into plot (a) around
7310 µs. (c) Transmissions of nodes 2 and 8 arriving at node 1 ( fc = 2401 MHz). The receive power differs by a factor of only
1.5 (2 dB). Both signals disturb each other when received concurrently.

at node 1. It is clearly visible how the RSSI increases from
the noise level during the transmission. The transmit power
was set to 0 dBm, so the link gain can be estimated as -63 dB.
We also observe increased signal power shortly before and
after the packet, which reveals the ramp-up and ramp-down
times of the transmitter’s radio. Note that those would not be
visible without RSSISPY.

In addition to “classic” transmissions we allow transmitters
to send pure, unmodulated carrier signals (before and after
packets as well as stand-alone). This enables us to activate the
transmit power for an arbitrary long time frame (not limited by
the maximum packet length). A demonstration of this feature
is shown in Fig. 4b. Amongst others, we use it in Sec. 4.5
to reveal important relations between packets and beating
patterns that would be impossible to identify otherwise.

4.3 Reception with Arbitrary Interference
In a first experiment we consider interference in general.

We explore how RSSISPY confirms the well known fact that
small interference has almost no effect, but it gets destructive

6We know the desired values, but the radio does not provide a way to
read the actually received bits.

if the signal-to-interference ratio falls below a certain level.
Scenario. Node A starts a transmission. A listening node syn-
chronizes to the transmitted signal and starts reception. In the
middle of the packet some node B starts another transmission.
Expectation. The listening node synchronizes to node A,
i.e., fc,R = fc,A ⇔ ∆ fc,A = 0 and hA and τA get compen-
sated. Hence, (8) reads as v(t) = uA(t)+hB/hA ·uB(t−(τB−
τA))ej2π∆ fc,Bt . If |hB| � |hA|, then the second addend is a
tameable noise term, and the packet from A can be success-
fully received. However, if |hB| gets large, the arbitrary shape
of the disturbance will inhibt successful reception.
Experiment. We perform the experiment with nodes 7 and 24
transmitting to node 3 and with nodes 2 and 8 transmitting to
node 1 (Fig. 3). First, nodes A and B separately transmit a
short packet (extended by a pure carrier period, see Sec. 4.2),
which is used to estimate the receive power of both nodes.
Then, both nodes transmit overlapping packets (time-shifted
600 µs to each other) with random payloads.
Results. The results are shown in Fig. 5 (note that we switched
the vertical axis from dBm to mW, which stretches the gran-
ularity of high values). Node 24 is received at node 3 with
considerably higher power than node 7. In consequence, an
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Figure 6: Capture effect. Transmissions of nodes 20 and 24 arriving at node 3 ( fc = 2483 MHz). Receive power of node 24 is
about 10x (10 dB) higher compared to node 20. The transmit activity markers x are aligned with the bitstream and extended by
10 µs at each side to include radio ramp-up and ramp-down times. (a) Strong packet starts 80 µs after weak packet and corrupts
received bits. (b) Strong packet starts 54 µs after weak packet. Amongst others it corrupts the length field, so the receiver tries to
demodulate more bits than sent. (c) Strong packet starts 52 µs after weak packet. The strong signal corrupts the weak packet’s
access address and inhibits the detection of a valid synchronization header. In consequence, the receiver continues scanning and
locks on the strong packet, which it receives successfully.
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Figure 7: Capture effect with 30 µs pure carrier signal before the first bit. Transmissions of nodes 20 and 24 arriving at node 3
( fc = 2401 MHz). Receive power of node 20 is about 2.5x (4 dB) higher compared to node 24. (a) Strong packet starts 110 µs
after weak packet. (b) Strong packet starts 82 µs after weak packet. (c) Strong packet starts 80 µs after weak packet. The receiver
captures the strong packet with 80 µs delay, i.e., the inserted pure carrier period effectively extends the capture window.

interfering signal from node 7 does not break a running re-
ception from node 24, but the other way around node 7 is not
received successfully when disturbed by node 24. Nodes 2
and 8 are received at node 1 with a relatively small power
difference. Here, interference is destructive in both cases, i.e.,
even if the interfering signal is weaker, its disturbing impact
is strong enough to hinder successful reception. Thus, the
experimental results confirm the analytical expectations.

4.4 Capture Effect
In the following experiment we investigate the well-known

capture effect [23]. In essence, it reflects the following ques-
tion: In view of Sec. 4.3, is it possible that the receiver turns
over to a strong packet if it starts later than a weak one (in-
stead of continuing a foredoomed reception)? The known
answer is yes, but only if the strong transmission starts within
a specific time frame TC, i.e., with a bounded offset relative
to the weak packet. This time frame, termed capture window,
represents a synchronization interval that is needed by the
receiver to detect a packet header. Once a valid header has
been detected, the receiver stops scanning for other packets
and goes with the detected transmission. As we shall see,
exploring the capture effect with RSSISPY reveals some very
interesting results.
Scenario. Node A starts a transmission. A listening node

observes the transmitted signal and tries to synchronize.
A stronger node B starts another transmission with time offset
tC relative to node A.
Expectation. Provided that the power difference between
nodes A and B is high enough (compare Sec. 4.3), there are
two cases. If tC > TC, then reception should fail. If tC < TC,
then the receiver should successfully receive the packet from
node B. The BLE 1M link layer packet starts with a constant
8 bit preamble followed by a 32 bit address field (Fig. 4a).
So far it is unclear if the address field has influence on the
capture window, so TC is expected to equal 8 µs or 40 µs.
Experiment. We perform the experiment with nodes 20 and
24 transmitting to node 3 (Fig. 3). As in Sec. 4.3, nodes A and
B first transmit separate packets that are used to estimate the
receive power of both nodes. Afterwards, both nodes transmit
overlapping packets with different payloads, where node 24
starts tC after node 20. We test different values of tC.
Results. The results are shown in Fig. 6. With tC = 80 µs the
receiver locks onto the weak signal and starts reception. From
the point of its appearance, the strong signal causes bit errors
and corrupts the received packet. With tC = 54 µs the strong
signal appears earlier and damages also the packet’s length
field, which makes the receiver trying to demodulate more
bits than sent. In contrast, with tC = 52 µs the receiver does
not lock onto the weak signal and instead receives the strong



packet. Apparently, the strong signal starts early enough to
prevent the detection of a valid packet header in the weak
signal. For the specific test run we can conclude that 52 µs ≤
TC ≤ 54 µs. In our experiments the critical value of tC varies
slightly. Combining all our runs we observed 48 µs < TC <
55 µs (without claiming any statistical reliability).

This result is interesting in two respects. First, it reveals
that the capture window TC includes the address field, at
least on the nRF52840. Second, the capture window is still
longer than the expected 40 µs. The reason for the latter
becomes visible thanks to RSSISPY. The disruptive effect of
the strong signal does not start with the packet’s first bit, it
starts immediately when signal power increases, i.e., during
the strong transmitter’s radio ramp-up phase. In Fig. 6c it is
clearly visible how the power of the strong signal rises during
the radio ramp-up and starts to dominate the receive signal
about 10 µs before the first bit.

This observation provokes an interesting question: Is it
possible to increase the capture window by artificially ex-
tending the delay between enabling the radio’s transmit path
(power amplifier) and transmission of the first bit? To an-
swer this question, we modify the experiment in that we start
each transmission with a 30 µs pure carrier signal before the
first preamble bit. The results of this modified experiment
are show in Fig. 7. It turns out that artificially delaying the
packet header indeed increases the capture window by the
same length, as the inserted signal segment acts like a header
extension. In other words, using this trick it is possible to re-
alize an arbitrarily large capture window and increased timing
tolerance—for the price of longer packet air times, higher en-
ergy consumption, and wasted channel capacity. Note that the
operational principle is not specific for BLE 1M or nRF52840,
it can be implemented on every radio platform that allows to
inject some kind of “garbage” before the packet.
4.5 Synchronous Transmissions

Next, we focus on the special case of synchronous trans-
missions. In this context, “synchronous” means that all trans-
mitters send identical data at (almost) the same time, i.e.,
under idealized assumptions7we have τk = τ and uk(t) = u(t)
for all k. Note that there is no oscillator synchronization, so
we still have to cope with CFO (∆ fc) and phase differences
(∆φ0). The main motivation that pushed research on ST has
been the believe that ST enable constructive interference. We
use RSSISPY to have a very close look at this topic. Before we
discuss our experiments, we derive the power of the receive
signal analytically to inform our expectations.
4.5.1 Receive Signal Strength with ST

With τk = τ and uk(t) = u(t), (8) can be rewritten as

v(t) = u(t − τ)
N

∑
k=1

hkej2π∆ fc,kt

︸ ︷︷ ︸
c(t)

(9)

i.e., the downconverted signal v equals the delayed baseband
signal u modulated by the term c(t). Although the CFOs
∆ fc,k = fc,k − fc,R depend on fc,R , their values are different
in general, and the receiver is unable to compensate for all of
them with a single choice of fc,R . Hence, c(t) introduces a

time-varying gain, which leads to a fluctuating receive signal
strength. In simple cases this fluctuation has a characteristic
sinusoidal pattern, so the phenomenon is known as the beating
effect [16]. For the general case, the magnitude of c(t) can be
derived as follows (c∗ denotes the complex conjugate of c).

|c(t)|2 = c(t)c∗(t) =
(
∑
k

hkej2π∆ fc,kt
)(

∑
k

h∗ke−j2π∆ fc,kt
)

= ∑
k

∑
l
|hk||hl |ej(2π∆ fc,kt+∆φ0,k)e−j(2π∆ fc,l t+∆φ0,l)

= ∑
k
|hk|2 +∑

k
∑
l>k

|hk||hl |
(

(∗)

e+j(2π(∆ fc,k−∆ fc,l)t+∆φ0,k−∆φ0,l)+
e−j(2π(∆ fc,k−∆ fc,l)t+∆φ0,k−∆φ0,l)

)
=

N

∑
k=1

|hk|2 +2
N

∑
k=1

N

∑
l=k+1

|hk||hl | · (10)

cos(2π(∆ fc,k−∆ fc,l)t+∆φ0,k−∆φ0,l)

Here, (∗) exploits the symmetry of the second line (it com-
bines the addends (k, l) and (l,k)), while (10) follows from
the rule cosφ=(ejφ+e−jφ)/2. In essence, (10) shows that the
mean receive signal strength is the sum of the individually
attenuated transmit powers, while the instantaneous receive
signal strength is a mixture of sinusoidal waves that fluctuate
around the mean. Overall, it holds 0≤|c(t)|2≤(∑k |hk|)2.
4.5.2 ST with Two Transmitters

We begin our ST experiments with N = 2 transmitters
and use RSSISPY to examine the resulting beating patterns
(i.e., the shape of |c(t)|2) as well as the position of bit errors.
We expose the correlation between the two and determine
intervals with constructive (|c(t)|2 > |hk|2) and destructive
(|c(t)|2 < |hk|2) interference.
Scenario. Two nodes A and B transmit a packet syn-
chronously (i.e., identical packet at exactly the same time).
A listening node tries to receive the overlayed packet. We
focus on constellations where A and B alone are received
with similar power, i.e., |hA| ≈ |hB|.
Expectation. With N = 2, (10) reads as

|c(t)|2 = |hA|2 + |hB|2 +2|hA||hB| ·
cos(2π(∆ fc,A −∆ fc,B)t +∆φ0,A −∆φ0,B)

Given |hA| ≈ |hB| this simplifies to |c(t)|2 ≈ 2|hA|2
(
1 +

cos(. . .)
)
, i.e., the receive power should have a sinusoidal

shape and swing between 0 and 4|hA|2.
Experiment. We perform the experiment with nodes 9 and 24
transmitting to node 3 and with nodes 2 and 8 transmitting to
node 1 (Fig. 3). As in Sec. 4.3, nodes A and B first transmit
separate packets that are used to estimate the receive power of
both nodes. In addition, in the beginning of each experiment
we use timestamps of such packets to determine the oscillator

7The scenario is most interesting if multiple transmitters have similar
receive power, as otherwise the dominant transmitter prevails as in Sec. 4.3.
For equally strong transmitters it is assumed that the differences in time-of-
flight are negligible compared to the symbol duration. Further, modulator
imperfections other than CFO and phase drift are neglected.
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Figure 8: Synchronous transmissions with slow beating. Transmissions of nodes 9 and 24 arriving at node 3 ( fc = 2483 MHz).
Receive power of both nodes (|hA|2) is about 7 ·10−8 mW (-71.5 dBm). The relative oscillator drifts have been measured
as -5.0 ppm and -5.4 ppm, respectively. (a) Simultaneous transmission of an unmodulated carrier signal. The CFOs of the
transmitting nodes cause a sinusoidal receive signal strength with phases of constructive and destructive interference. The beat
frequency is close to 1 kHz (one period per 1000 µs). (b) Simultaneous transmission of two long identical packets. Destructive
interference causes bit errors whenever the receive signal strength falls below a critical level. (c) Simultaneous transmission of
two short identical packets. The packet is received without errors, as it lies in a phase with constructive interference.
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Figure 9: Synchronous transmissions with fast beating. Transmissions of nodes 2 and 8 arriving at node 1 ( fc = 2401 MHz).
Receive power of both nodes is 4 ·10−7 mW (-64 dBm). The relative oscillator drifts have been measured as +7.7 ppm and
-0.4 ppm, respectively. (a) Simultaneous transmission of an unmodulated carrier signal. The CFOs cause a sinusoidal receive
signal strength. The beat frequency is close to 19 kHz (one period per 53 µs). (b), (c) Simultaneous transmission of long (b) and
short (c) identical packets. Destructive interference causes bit errors whenever the receive signal strength falls below a critical
level. The receiver tries to demodulate a wrong number of bits because the length fields are corrupted.

drift between each transmitter and the receiver and, based on
that, to estimate the CFOs ∆ fc,A and ∆ fc,B. Eventually, nodes
A and B synchronously transmit (i) a pure carrier signal, (ii)
a short packet followed by a long pure carrier period, and (iii)
a long packet surrounded by pure carrier periods. The carrier
periods are used to reveal the beating patterns more clearly,
which is otherwise impossible with short packet air times.
Results. The results of the first experiment are shown in
Fig. 8. The receive signal strength has a sinusoidal shape and
swings between 0 and roughly 25 ·10−8 mW ≈ 4|hA|2 (re-
member the nonlinear granularity of the samples). Based on
the measured oscillator drifts, the expected beat frequency is
∆ fc,A −∆ fc,B = (-5.0 ppm+5.4 ppm) ·2483 MHz = 993 Hz,
which is surprisingly close to the observed 1 kHz (one beat
per 1000 µs). Bit errors arise whenever the receive signal
strength falls below a critical threshold. The beat period is
long enough to enable a successful transmission of some con-
secutive (short) packets with a certain probability. This case
is termed slow beating (aka wide or long beating) [16, 8, 7].

In contrast, the results of the second experiment shown in
Fig. 9 illustrate fast (or narrow) beating. Here, the expected
beat frequency is ∆ fc,A − ∆ fc,B = (7.7 ppm + 0.4 ppm) ·
2401 MHz = 19.4 kHz, which is again close to the observed

value of 19 kHz (one beat per 53 µs). The power drops occur
more frequently (with shorter duration), making it impossible
to successfully transmit even short packets.
4.5.3 ST with Three Transmitters

In this experiment we increase the number of transmitters
to N = 3 and again examine the beating patterns with the help
of RSSISPY. The example illustrates the intricate beating
shapes resulting from a larger number of transmitters.
Scenario. We straightforwardly extend the setting of
Sec. 4.5.2 to three transmitters A, B, and C, which send an
identical packet at the same time. Again, a listening node
tries to receive the overlayed packet.
Expectation. With N = 3 we can rewrite (10) as

|c(t)|2 = |hA|2 + |hB|2 + |hC|2

+ |hA||hB|cos(2π(∆ fc,A −∆ fc,B)t +∆φ0,A −∆φ0,B)

+ |hA||hC|cos(2π(∆ fc,A −∆ fc,C)t +∆φ0,A −∆φ0,C)

+ |hB||hC|cos(2π(∆ fc,B −∆ fc,C)t +∆φ0,B −∆φ0,C)

Hence, if all pairwise CFO differences are unequal, then the
receive power’s shape should appear as a mixture of three
sinusoidal signals. If any differences are equal, then the
mixture should seem to contain accordingly less components.
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Figure 10: Synchronous transmissions with three transmitters. Transmissions of nodes 9, 20, 24 arriving at node 3 ( fc =
2483 MHz). Receive power of nodes 9 and 24 is about 6.3 ·10−8 mW (-72 dBm), node 20 is received with 2.5 ·10−8 mW
(-76 dBm). The relative oscillator drifts have been measured as -5.0 ppm, -2.6 ppm, and -5.3 ppm, respectively. (a) Simultaneous
transmission of an unmodulated carrier signal. The receive signal strength caused by the transmitter’s CFOs is a superposition
of multiple sine waves. Two beat frequencies can be identified: about 700 Hz (one period per 1400 µs), and 6.7 kHz (one period
per 150 µs). (b) Simultaneous transmission of three long identical packets. Destructive interference causes bit errors whenever
the receive signal strength falls below a critical level. (c) Simultaneous transmission of three short identical packets. The packet
is received without errors, the receive power is high enough for successful reception.

Experiment. We perform the experiment with nodes 9, 20,
and 24 transmitting to node 3 (Fig. 3). As in Sec. 4.5.2, we
use separate packets to estimate the receive power and oscil-
lator drift of each node. Then, all three nodes synchronously
transmit the same test signals as in Sec. 4.5.2.
Results. The results are shown in Fig. 10. The receive signal
strength is a mixture of sine waves, which has a more com-
plex shape compared to the two-transmitter case (Sec. 4.5.2).
Based on the measured oscillator drifts, there should be three
components with frequencies 745 Hz, 6.0 kHz, and 6.7 kHz.
Two of them are clearly visible, but the 6.0 kHz component
cannot be identified. To clarify what is happening here, we
conducted another experiment where the same nodes trans-
mit a long carrier signal (25 ms). We analyzed the recorded
results via Fourier transform. The frequency spectrum indeed
showed three significant components at 710 Hz, 5.95 kHz,
and 6.66 kHz. It turns out that, except for the trivial cases,
manually interpreting beating patterns is an error-prone task.

Besides that, bit errors again arise when the receive signal
strength falls below a critical threshold. It is interesting that
only the deepest power drops cause bit errors in the concrete
experiment. This cannot be generalized. It underlines the
diversity of beating patterns and their consequences, and the
difficulty in predicting individual effects in larger networks.
4.6 Other Insights

Before we conclude our experiments, we want to mention
some observations that are of general interest and independent
of specific concurrent transmission scenarios.
Overshoot and AGC influence. In some of our measurements
we find overshoot effects in form of singular spikes (e.g., in
Fig. 8b) or systematic patterns (more or less, e.g., in Fig. 9).
We suppose that this is related to the AGC as follows. Let Pa
denote the power of the receive signal v after amplification,
i.e., Pa(t) = G · |v(t)|2. The task of a typical AGC is to steer
the gain G such that Pa reaches some fixed constant value,
i.e., Pa(t) =G(t) · |v(t)|2 = const. Hence, G(t) can be used as
an RSSI proxy because under ideal conditions it is inversely
proportional to |v(t)|2. However, the system dynamics of
a real AGC control loop are not ideal, and utilizing G(t)

as RSSI causes artifacts. We believe that this is the reason
for the following observations found in our experiments, all
with multiple transmitters active: (i) significant overshoot in
Figures 5 and 7, (ii) single outliers in Fig. 8, (iii) overshoot
beyond 4|hA|2 = 16 ·10−7 mW in Fig. 9 and similar overshoot
in Fig. 10. Further, Fig. 8c shows an interesting effect that
substantiates our suspicion that the nRF52840’s RSSI output
is influenced by the AGC: While the RSSI signal has the
expected sinusoidal shape outside of the packet, it exhibits a
remarkably stable level during the packet transfer. All these
effects emphasize the importance of considering the AGC.
Nonetheless, we are confident that the resulting artifacts do
not diminish the utility of RSSISPY.
Radio event timing. Let TS denote the delay between start-
ing a packet transmission (after radio ramp-up) and the first
preamble bit on air. Further, let TR be the delay between the
first preamble bit on air and the generation of a corresponding
radio event at the receiver. Ideally, one would expect TS = εS
and TR = τ + εR, where εx � 1 µs represents some small in-
ternal processing delay. In practice, however, we find that
TS +TR ≈ 10 µs in BLE 1M mode, i.e., the nRF52840’s radio
induces delays on the order of multiple bit times. This leads to
a tricky problem because without additional measuring equip-
ment it is impossible to split the sum value into TS and TR (any
measurement from start to event includes both, TS and TR).
Hence, there is an uncertainty of several microseconds in the
temporal alignment of the bitstreams.8 We decided to pretend
TS = 0, i.e., our plots show each bitstream at the earliest pos-
sible position. Comparing the location of bit errors with the
RSSI signals (e.g., in Fig. 6) suggests that the actual value of
TS is greater, i.e., the true position of each bitstream is a few
microseconds to the right. However, determining the precise
values of TS and TR is beyond the scope of this paper, and in
favor of clarity we avoided the usage of vague estimations.
5 Discussion
Other radio standards. In this paper we focus on the BLE
1M mode. Using RSSISPY with other BLE modes is straight-

8This issue does not impair clock synchronization because the latter relies
mostly on the sum TS +TR and does not require to split the terms apart.



forward, essentially it only requires the adaptation of some
configuration registers and constants. It is an interesting ques-
tion if RSSISPY can also be used with other narrowband radio
standards, e.g., IEEE 802.15.4. The used RSSI sampling
functionality of the nRF52840 is assigned to BLE [6], but
maybe it also works in 15.4 mode. Besides that, even in BLE
mode RSSISPY detects any energy in the selected channel
(BLE signals, interference, noise), i.e., it can be used as a
“power meter” for all kinds of radio signals in the selected
frequency band. Indeed, we demonstrate this capability with
pure carrier signals, which are examples for non-BLE signals.
Other applications of RSSISPY. In the shown experiments
we process the RSSI samples offline and use them to manu-
ally inspect and analyze specific interference scenarios. The
continuous sample streams also facilitate a more reliable es-
timation of important parameters like link power and SNR.
That said, we believe that the possibility to use RSSISPY “in
the wild”, i.e., in the same nodes and running in parallel to
the application of interest, enables a new class of protocols
that exploit RSSI streams online. For example, the character-
istics of beating patterns presented in Sec. 4.5 could render
it possible to estimate the number of transmitters and their
parameters (e.g., |hk|, ∆ fc,k, ∆φ0,k) from a single transmission.
This side information could be used in higher protocol layers
to adapt traffic patterns and make communication more effi-
cient. It may also allow to decode information from erroneous
packets that are otherwise useless. Further, it is possible to en-
code information in the RSSI signal itself, which is a common
method to enable CTC [13]. The high sample rate provided
by RSSISPY could raise CTC capabilities to a new level. It
may also be beneficial for localization and ranging tasks, e.g.,
to cope with very fast moving nodes.
Sample rate. The ideal sample rate is determined by the high-
est signal frequency or the anti-aliasing filter. Unfortunately,
factors like external interference can induce high frequency
components, and little is known about nRF52840’s filter. So,
RSSISPY provides a very high sample rate to overcome poten-
tial issues. In the rare case that the highest possible frequency
is known in advance, the sample rate may be reduced, e.g., to
enable the implementation of an extended trigger logic.
6 Conclusions

We have presented RSSISPY, a software tool for contin-
uous RSSI sampling on COTS devices. Compared to prior
solutions, RSSISPY provides more than 20× higher time res-
olution and enables bit-level RSSI inspection in the target
environment, which empowers research and inspires new
applications. We used RSSISPY to investigate concurrent
transmissions in low-power wireless networks and uncovered
important details of physical layer effects that have been un-
known so far. Beyond that, we have generalized the analytical
description of beating patterns in ST for an arbitrary number
of transmitters and validated this result in experiments.
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K. Römer, M. Schuß, and A. Stanoev. The Impact of the Physical Layer
on the Performance of Concurrent Transmissions. In IEEE Int. Conf.
Network Protocols, ICNP ’20, pages 1–12, Madrid, Spain, Oct. 2020.

[9] C. A. Boano, M. Schuß, and K. U. Römer. EWSN Dependability
Competition: Experiences and Lessons Learned. IEEE Internet of
Things Newsletter, Mar. 2017.

[10] K. Chebrolu and A. Dhekne. Esense: communication through energy
sensing. In MobiCom ’09, pages 85–96, New York, USA, Sept. 2009.

[11] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network
flooding and time synchronization with Glossy. In IPSN ’11, pages
73–84, Chicago, IL, USA, Apr. 2011.

[12] X. Guo, Y. He, and X. Zheng. WiZig: Cross-Technology Energy
Communication Over a Noisy Channel. IEEE/ACM Transactions on
Networking, 28(6):2449–2460, Dec. 2020.

[13] Y. He, X. Guo, X. Zheng, Z. Yu, J. Zhang, H. Jiang, X. Na, and
J. Zhang. Cross-Technology Communication for the Internet of Things:
A Survey. ACM Computing Surveys, Mar. 2022. Just Accepted.

[14] R. Hofmann, C. A. Boano, and K. Römer. X-Burst: Enabling Multi-
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