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Abstract
Solar cells are mainly used as power sources, but can be

used for sensing as well. We propose a novel indoor sys-
tem that exploits solar cells to track people by monitoring the
changes in light intensity caused by their shadows and reflec-
tions as they walk by. Our framework has three main com-
ponents. First, we develop a simulator based on a ray-tracing
model to determine how the solar cells should be positioned
in the tracking environment to maximize the signal to noise
ratio. Next, we apply changepoint detection methods to con-
vert the (noisy) solar cell signal into a binary detection sig-
nal. Our detection method uses a Bayesian approach, which
allows our system to work well in various environments, with
natural and artifical light. Finally, the binary output from
multiple solar cells is fused to track multiple targets. The
tracking engine is based on a particle filter implementation
based on the probability hypothesis density filter. This ap-
proach allows us to perform tracking without knowing the
actual number of targets in the environment. To evaluate our
framework, we build small tags that consist of a solar cell, a
micro-controller and a wireless module, and deploy them in
a real apartment. Ours results show that our system allows
solar cells to track people under different lighting conditions,
during day and night.

1 Introduction
Indoor tracking is an active research area with a wide

variety of applications, ranging from elderly care to occu-
pancy monitoring. Contrary to indoor positioning, where
fine-grained information is required, indoor tracking only re-
quires a coarse-grained sequence of locations to determine
trajectories.

A common property of most indoor tracking systems is
that they are passive, which means that targets do not need
to carry any device. Multiple sensing modalities have been

explored to achieve such passive approach. Cameras and
acoustic sensors provide reliable tracking but they raise pri-
vacy concerns [6]. To overcome these privacy-issues, re-
searchers have proposed the use of radio tomography [15],
seismic sensors [2], and light sensors [8]. These sens-
ing modalities can detect the presence of a target but can-
not identify it. Following this type of privacy-preserving
tracking, our study proposes a novel indoor tracking sys-
tem that exploits ambient light. Similar to some prior stud-
ies [7, 16, 5, 8, 24], our system leverages the shadows and
reflections caused by people as they walk by, but contrary
to those studies we do not modify the lighting infrastruc-
ture [7, 16, 23], utilize complex training phases [5, 8], or re-
quire placing the sensors on rather inconvenient places such
as the floor [24].

Aim. We envision a system that is not only passive and
privacy-preserving but also easy to deploy and maintenance-
free. The aim is to deploy small tags consisting of solar cells,
which can act not only as energy harvesters but also as photo-
sensors. The tags will report the presence (or absence) of
people to a central location, which will be in turn responsible
to merge all the data to obtain the final trajectories. For this
work, we are focusing on demonstrating the capabilities of
solar cells as sensors to track movements in an indoor setting.
We aim to build an end-to-end tracking system using solar
cells to detect and track passing targets.

Challenge. At first glance, the problem may look decep-
tively simple. Solar cells (or light sensors in general) can
provide information that any tracking algorithm could pro-
cess to obtain trajectories. The challenge arises due to the
complex interaction between the type of light source (arti-
ficial or natural), the reflective properties of the surrounding
surfaces (environment and people), and the distance between
the people passing by and the sensors. All these variables
create a highly variable and noisy environment.

Contributions. Considering the above challenge, our
system, dubbed Inti, provides the following contributions.

section 2: Placement. To facilitate target detection, the tags
need to maximize the changes that shadows and reflections
cause on the solar cell signal. But an indoor setup offers
multiple locations where the tag can be placed, what is the
optimal location, height and angle to maximize those signal
changes? We propose a ray-tracing approach to identify the
optimal placement of our solar cell tags.



section 3: Detection. The changes on the received signal
are not simple valleys or peaks created by the shadows and
reflections, there are multiple extrema with different inten-
sities. Simple peak detection methods would not work. We
adapt and demonstrate that a Bayesian approach [1] is well-
suited to detect events without the need to fine-tune parame-
ters for every specific scenario.
section 4: Tracking. Even with the best placement and
detection methods, the sensors will provide false positives
and false negatives due to the complex propagation of light
waves. Among various tracking algorithms, we adapt an im-
plementation of Particle Filters based on Probability Hypoth-
esis Density [13] and demonstrate its feasibility to overcome
misreadings in multi-target scenarios.
section 5: Evaluation. To demonstrate the validity of our
framework, we build a simple platform consisting of solar
cells, a microprocessor and BLE transmitter, and deploy six
of these tags in a small apartment. Our evaluation considers
multiple types of trajectories with different lighting condi-
tions, during the day with sunlight and during the night with
artificial lighting.

2 Simulation
To detect and track a target with solar cells, the target

first has to cause sufficient variations on the amount of light
reaching the tag. In this section, we describe a simulation
tool that we developed to identify the best placement options
for the tags.

Light-based sensing has been studied extensively. In
several interactive applications, participants utilize photo
sensors at very close distances, of a few centimeters or
less [11, 10]. In this benign setup, most of the light reach-
ing the sensor can be blocked, creating clean signals. In our
study, however, the targets move at longer distances from the
solar cells (around one meter or more), resulting in smaller
and noisier signals. This makes the detection and tracking
a more difficult task. This difficulty is further compounded
by the nature of lighting in an indoor environment, where
multiple light sources are typically present to ensure uniform
lighting, and walls and furniture have different reflecting and
absorbing properties. Such a setup generates multiple paths
for the light rays and results in additional noise on the solar
cell output.

In an uncontrolled and noisy environment, with many
light sources and a limited number of solar cells, it can be
difficult to determine the desirable locations to place the tags.
The solar cells could be placed on the ceiling, floor or along
the walls. Among these three options, installations along
walls is the most suitable because placements on the floor
are impractical and placements on the ceiling reduce the re-
ceived signal strength coming from reflections bouncing off
the floor. Installations along the walls, however, pose mul-
tiple options. For example, the solar cells can be placed on
different heights and have different angles. In this section,
we develop a simulation tool to identify the height and angle
of solar cells that maximize the (light) changes caused by
passing people. To simulate the voltage levels observed by
solar cells over time, our tool considers different solar cell
placements and different walking paths of a moving target.
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Figure 1: Light rays from a source to a receiver. Both types
of path, LOS and reflections, are depicted.

A higher voltage variation corresponds to a better configura-
tion, since the signal will be easier to process.

2.1 Ray-tracing
The simulator is based on the concept of ray-tracing.

Ray-tracing is a method that models the behaviours of light
rays and their interactions with other objects in an environ-
ment [17]. Three types of objects are defined in our ray-
tracing method, as shown in Figure 1: A source represents
the Lambertian light sources that emit light, such as a light
bulb. A receiver represents the solar cells, which collects the
incoming light rays. A surface represents the diffuse and re-
flective surfaces in an environment, such as walls, floors and
doors.

In this ray-tracing method, light emitted from the source
is represented by a set of individual light rays, each carrying
a portion of the power of the light. Each ray propagates in
the environment in different directions, and can be reflected
or absorbed when it encounters different surfaces. As a tar-
get (person) appears in different locations, it can block off
the paths between the receivers and the light source, but can
also reflect additional light rays into the receiver. The power
of light measured by the solar cells is approximated by sum-
ming up the number of light rays impinging over them.

2.2 Applying Ray-tracing for Tracking
In the previous section, we describe the ray-tracing algo-

rithm in a static environment. In a dynamic setup, as a target
passes by, the ray-tracing process is repeated at each time
step to estimate the changes in voltage output observed on
the solar cell. This simulation process is depicted in Fig. 2
and it follows four main steps:

Step 1: We generate an approximate 3D model of the en-
vironment. This model captures the location of the light and
the dimension of the space (floor, ceiling and walls).

Step 2: We choose various solar cell positions over the
wall, with different heights and angles.

Step 3: A human target is simulated, and moves through
the environment along a predefined path. The paths go from
one end of a passageway to the other, at different distances
from the walls. At each time instance dt, the target moves
forward by a distance d and the ray tracing algorithm is ex-
ecuted. For each time instance, the expected received power
for each solar cell is calculated and recorded.
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Figure 2: Step-by-step overview of the simulation process for determining the best solar cell configuration.
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Figure 3: Heatmap

Step 4: After the target has finished moving along the
path, the simulation run is finished.From this data, we evalu-
ate the quality of each tag placement by calculating the stan-
dard deviation of the voltage output over the simulation run.

Fig. 3 shows an example of the heatmaps that describe
how the standard deviation of the received light intensity
changes for different solar cell positions, angles, and target
distances. Two sample angles are shown, 0◦, and −45◦ (fac-
ing towards the floor). The difference between the left and
right plots is the distance at which the target passed the solar
cells, 80 cm and 150 cm respectively.

It can be seen that in general, a solar cell at an angle of
−45◦ is expected to perform better than one at 0◦, as it re-
sults in a higher standard deviation. In addition, we can see
that cell configurations performing best for targets at a close
distance do not necessarily perform best for targets passing
at a longer distance. For example, when positioning the so-
lar cell at −45◦, placing the tag at a height of around 50 cm
gives the highest detection rate for a target passing at 80 cm
distance. However, when the target passes at a distance of
150 cm, this configuration does not give the best result. In-
stead, for this longer range the solar cell should be positioned
around 155 cm. These results illustrates how the simulator
can identify the best placements for a given range.

(a) Picture of the hallway during
the experiments (with only one solar
cell).

(b) Screenshot of the hallway in sim-
ulation.

Figure 4: Picture of the real hallway and the hallway in sim-
ulation (no rays traced).
Table 1: Normalized standard deviation calculated from the
simulation output for selected solar cell configurations. The
target distance y is in cm.

Variance for target distance y
y=50 y=80 y=110 y=150

Rating Height 6

So
la

r
ce

ll
co

nfi
g.

Good 50 cm -45◦ 0.95 0.61 0.31 0.15
35 cm -25◦ 1.00 0.63 0.31 0.18

Med 110 cm -10◦ 0.80 0.15 0.13 0.08
35 cm 0◦ 0.88 0.58 0.15 0.08

Med-L 140 cm -5◦ 0.79 0.09 0.08 0.04
125 cm 0◦ 0.81 0.09 0.08 0.05

Bad 200 cm -45◦ 0.00 0.05 0.11 0.09
185 cm -10◦ 0.01 0.02 0.03 0.02

2.3 Validation
In this section, we perform empirical measurements to

validate the simulation trends. The setup used for both, the
experiments and simulation, is a hallway in an office setting,
as shown in Fig. 4. Since we only approximate the environ-
ment in the simulation, our goal is not to obtain the exact
measurements at the tags, but to identify if one tag config-
uration (location and angle) is better than another. In other
words, considering two tags, i and j, if tag i provides a higher
voltage than tag j in the real setup, we want the simulator to
also show that tag i is better, even if the simulated and em-
pirical voltage values do not match.

Simulation setup. The dimension of the hallway and the
locations of the lights are the same as in the real setup. A set
of solar cell configurations with different heights and angles
are evaluated for different paths. For each path, a target –
modeled as a big block– moves along the hallway. Based on
the results of the simulator, we rate the quality of each solar
cell configuration to be one of ”Good”, ”Med (medium)”,
”Med-L (medium-low)”, and ”Bad”.

Selected configurations. The simulation results evaluate a



Figure 5: Comparison of the simulation and experimental
results.

large number of configurations, but measuring all of them
in a real setup would be time consuming. To validate the
correctness of the simulation results, we select eight config-
urations –two in each quality rating category (Good, Med,
Med-L, Bad)– as shown in Table 1.

Experimental setup. For each tag configuration (location
and angle), we perform experiments with the same walking
paths to compare the simulated and empirical results.

Fig. 5 shows the normalized results of both the simulated
and the experimental values for the eight configurations. For
each configuration, we consider four paths with different dis-
tances from the wall: 50 cm, 80 cm, 110 cm and 150 cm.
Hence, each configuration –represented by a different color–
has four points in the figure. The dashed line indicates a per-
fect agreement between simulation and experimental results.
The closer a data point is to the dashed line, the closer the
results are between simulation and experiments.

It can be observed in Fig. 5 that there is a good agreement
between the ranking given by the simulation and the exper-
iments, as the data points concentrate near the dashed line.
More importantly, what the simulator identifies as bad place-
ments are also poor placements with the empirical results.
Note that the two bottom configurations (pink and gray dots)
are concentrated at the bottom left. For these placements,
the variation of the voltage output is small both in the exper-
iment and simulation, making it difficult to correctly detect
passing targets. On the other hand, the two configurations
rated as good in Table 2 (green and blue dots) extend to the
top right part of the figure. The placements rated as medium
(orange and red) and medium-low (purple and brown) only
perform reasonably well when the target passes nearby the
wall, but with more erratic correlations for other paths.

Even though a one-to-one correspondence between the
simulated and experimental results is difficult to obtain, we
can observe from Fig. 5 that we can still achieve useful in-
sights. From the validation results, it can be seen that the
simulator can effectively inform the placements of solar cells
for target detection. In the experimental environment, the
hallway has both artificial light, which is captured in the sim-
ulator, as well as ambient light from the window, which is not
captured. Despite the fact that the simulation setup does not
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Figure 6: Overview of the steps required for multi-target
tracking with example data.

capture everything in real life, we were able to get a good
agreement in terms of the quality of solar cell configurations
between the simulation and experiments. In the evaluation
we perform in the real apartment (Section 5), we deploy the
tags using the guidelines obtained in this section.

3 Detection
Once we identify a good placement for the tags, we need

to use these signals over time to detect passing targets. An
overview of the steps involved in target tracking is shown in
Fig. 6. The analog output of the solar cells at each timestep
go through a changepoint detection algorithm, which pro-
duces a binary output indicating whether a target has been
detected. This binary output is then processed in a tracking
algorithm (explained in the next section) to determine the
paths followed by people.

In this section, we describe how the changepoint detec-
tion algorithm is able to detect the presence of targets from
solar cell outputs. The presence of ambient light makes it
a more challenging task than simply identifying the valleys
in a signal with a thresholding algorithm. We describe the
adaptation of a Bayesian method to mitigate the effects of
the changing lighting conditions throughout the day. Later,
we show that this Bayesian approach outperforms a thresh-
olding algorithm under varied experimental conditions.

As a person moves across the room from one side to an-
other, the variations on the solar cell outputs can have dif-
ferent characteristics. An example of six solar cells placed
in different locations in a room as a person walks by can
be seen in Fig. 7. In the cases of solar cells C and F, pro-
nounced dips in the signal can be observed as a person walks
by. However, this is not true for every solar cell. For exam-
ple, in the case of solar cell D, a peak is observed instead
of a dip due to reflections of light. In the case of solar cells
A, B and E, many small fluctuations are observed instead.
The detection algorithm is able to identify the changes both
when they are pronounced (C, D and F), and when there are
small fluctuations (A, B and E), as shown with red dots. On
top of this, the level of ambient light changes overtime, pos-
ing additional challenges in associating changes in solar cell
outputs to passing targets.

To address the challenges in detecting a passing target
from the noisy signals, we need to design a detection algo-
rithm that can meet the following requirements: First, the
detection algorithm should be able to adapt to the chang-
ing ambient light conditions. The detection algorithm should
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Figure 7: Variations of solar cell outputs as a target walks by.

be able to achieve this without prior training, otherwise, the
fine-tuning process has to be repeated for every scenario and
has to change between environments. For example, the in-
tensity of the ambient light can vary significantly through-
out the day, and the furniture and objects present in a room
can change from environment to environment, and also over-
time. The detection algorithm should be able to adapt to
these changes without requiring training. Second, the algo-
rithm should be able to detect passing targets generating dif-
ferent types of changes on the solar cell outputs, peaks and
valleys. Third, to connect the target detection phase with the
target tracking phase (explained in the next section), the de-
tection algorithm has to be able to determine whether a target
is present in real time. Therefore, it should be able to identify
the changes in the solar cell outputs using only the received
data from the past.

For these reasons, we consider a Bayesian approach
called the Bayesian online changepoint detection (BOCD).
The BOCD algorithm constantly estimates and updates the
mean and variance of the probability distribution of a sig-
nal [1]. As new measurements arrive from the solar cell out-
puts, the BOCD algorithm estimates whether the new data
points belong to the same probability distributions of pre-
viously received data points. This approach compensates
for the slow changes in the environment, for example, the
changes in daylight will lead to a smooth adaptation of the
underlying distribution. In the meantime, when a target
passes a solar cell, causing the output to change significantly
in a very short period of time, the BOCD algorithm will rec-
ognize that this change comes from a new data distribution.

In the BOCD algorithm, when the received data points
start to exhibit different characteristics to previously received
data points, a changepoint event occurs. For example, in
Fig. 8, events are detected a times 3 and 5. A general de-
scription of the steps in a BOCD algorithm is shown in Al-
gorithm 1, while the detailed algorithm can be found in [1].
With the default parameters, as presented in [1], the BOCD
algorithm has two important features. First, a changepoint
happens at time n when the probability of a new data point

rn
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Figure 8: Evolution of the value for run length rn for a signal
xn with changepoints at t=3 and t=5. Left: The data point
received at each timestep. Right: The evolution of the run
length rn. For each timestep, the value of rn increases by
one (solid line), or it is reset to rn = 0 when a changepoint
occurs (dashed line). The value of rn that is most likely for
the timestep is colored black.

P(rn = 0|x0:n) exceeds a threshold Pr,min (time stamps 3 and
5 in Fig. 8 right). Second, changepoints can occur at consec-
utive time stamps. In our empirical experiments, we found
that these default features do not provide good results and
give many false positives (FPs) and false negatives (FNs).
Next, we explain in more detail the reasons for these unde-
sirable phenomena and the solutions we provide.

• FPs: As targets pass by a solar cell, the changes they
cause are not consistent and may include intermittent
transitions, as shown in solar cell B in Fig. 7, which
can cause FPs in the detection results. This occurs be-
cause the BOCD algorithm uses a variable called the
run length r to keep track of the time between change-
point events. Fig. 8 shows an example of how the value
of r is updated. At tn = 0,3,5, changepoints are de-
tected, which cause rn to be set to 0. At other time
steps, rn is incremented by one. BOCD has no lim-
its on the minimum value of r: changepoints can occur
consecutively, which is a problem for our noisy signals
because a single event is detected as multiple (consec-
utive) events. To reduce the number of FPs, we define
a minimum time (run length) between two consecutive
changepoints. This minimum time is determined by the
sampling rate of the system and considers that people
require a few seconds to cross over the field-of-view of
the solar cell.

• FNs: At each time step, if the BOCD algorithm deter-
mines that the probability of the new data point xn is
higher than the threshold Pr,min, the point is considered
a ’changepoint event’, which indicates that a change of
the underlying distribution has occurred. The problem
is that, depending on the illumination environment and
the followed paths, the changes caused by passing tar-
gets are not always instantaneous. Therefore, it can be
difficult for the BOCD algorithm to determine the exact
timestep when a changepoint event occurs, leading to
False Negatives. To reduce the number of FNs, instead
of applying a threshold Pr,min on a single timestep, we
apply the threshold over a predetermined range of ad-
jacent timesteps. This approach allows us to identify
moderate changes in probability, without missing sud-



Algorithm 1: The BOCD algorithm of a signal with Gaussian distribution

At each timestep n,
1. Observe a data point xn

2. Calculate the possibility that xn belongs to the currently estimated method
πn

(r) = P(xn|µn
(r),σ

2(r)
n ),

where (r) indicates the current run, µ and σ2 represents the mean and variation of the estimated Gaussian distribution,
respectively.

3. πn is used to calculate the growth probability and changepoint probability
P(rn = rn−1 +1,x1:n) = P(rn−1,x1:n−1) ·πr

n · (1−H(rn−1)),
P(rn = 0,x1:n) = ∑rn−1 P(rn−1,x1:n−1) ·πr

n ·H(rn−1)

4. The probability distribution of the runlengths are normalized, if P(rn = 0,x1:n) is larger than a predefined threshold Prmin,
the runlength is reset to 0. Otherwise the runlength is incremented by one

5. The mean and µ and variance σ2 of the distribution is updated according to the methods described in [14]

den transitions. Formally, in our system, a changepoint
is detected when ∑

r=r̂+nd
r=r̂−nd

Rn,r ≥ Pr,min, where nd is a
predefined range.

3.1 Evaluation
To evaluate the performance of the BOCD algorithm, we

apply it to the experimental data obtained for the hallway
in Section 2.3 (32 test points in total). In the experiments,
the target position at each timestep was recorded, making it
possible to provide a ground truth for analysis.

To evaluate the accuracy of the detection algorithms, we
need to determine at what timesteps the target is considered
detectable by a solar cell. For this, we first calculate the
distance of the target to the tag for each timestep:

dxt = |xreceiver− xhuman,t |, (1)
dyt = |yreceiver− yhuman,t |, (2)

dst =
√

d2
xt +d2

yt (3)

where dxt indicates the distance between a passing target
to the wall where the solar cell is placed. Considering the
field of view of the solar cell, we consider a target within the
detectable range of a receiver when dxt is less than 40 cm and
dst is less than 100 cm. We compare the performance of the
BOCD algorithm with a simpler, gradient-based threshold
algorithm, dubbed GCPD, which determines whether a tar-
get is present by calculating the gradient of the data within a
time window and comparing it against a pre-defined thresh-
old. Instead of using the accuracy, we use the F1-score in the
comparison, which is a commonly used metric in statistical
analysis of binary classification [20]. The F1 score is more
advantageous in considering the effects of FPs and FNs, as
well as when the number of data points in each category is
very different. The F1 score is given by:

F1 = 2 · precision · recall
precision+ recall

. (4)

Figure 9 shows a violin plot for the F1-scores for both
BOCD and GCPD. The average F1-score is similar for both
algorithms. For BOCD it is 0.56 (average precision: 0.47,
average recall: 0.85). For GCPD it is 0.51 (average preci-
sion: 0.47, average recall: 0.68). However, BOCD is much
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Figure 9: Violin plot of F1-scores of the BOCD and GCPD
algorithms used for changepoint detection. Each point shows
the score of one of the 32 experiment runs.

more consistent in its performance than GCPD. The scores of
BOCD are spread evenly around the average value. On the
other hand, GCPD has a larger number of runs performing
very well (F1-score larger than 0.75), but on the other hand
also has a significant number of runs scoring very poorly
(near 0). BOCD scores significantly better in recall, meaning
that it is better at detecting the existence of changepoints.

In conclusion, for well-controlled scenarios, where tar-
gets pass by the solar cells at approximately the same dis-
tance, and no change in the environmental condition exists,
GCPD can be fine-tuned to outperform BOCD. However,
BOCD is more robust and gives a better overall performance
when changes occur in the experimental setup and when ex-
periments are carried out in different environments.

4 Tracking
In the previous section, we applied changepoint detection

methods to produce binary outputs from the received solar
cell signals. At each time step, the detection outputs indicate
whether a human target is present. Our goal in this section is
to track the walking paths of human targets in an indoor area



by combining the binary outputs of multiple solar cells.
However, we face two main challenges. First, factors such

as changes of light conditions in the environment and differ-
ent walking distances of the targets can introduce significant
noise into the detection results that propagate into tracking.
Second, the number of people in the tracking area changes
over time. Calculating the joint probability of an unknown
number of targets is difficult and computationally expensive.
To address these challenges, we adopt a well-known tech-
nique for target tracking in noisy environments: the proba-
bility hypothesis density (PHD) filter [13].
4.1 The Particle PHD Filter

The PHD is designed for tracking multiple targets and
propagates only the first-order statistical moment, thus re-
ducing the computational complexity. The PHD can be im-
plemented efficiently with a particle filter, called a PHD fil-
ter. Next, we describe an overview and the main operations
of the PHD, followed by the corresponding Particle Filter
implementation.

Overview of the PHD. In essence, the PHD tracks mul-
tiple targets using a density function. The areas where the
targets are located have a higher density (peaks) and the inte-
gral of the density function determines the number of targets.
Formally, the general equation describing the PHD is given
by, ∫

S
Dk|k(x|Z(k))dx = K̂. (5)

Given a set of binary detection outputs Z at timestep
k (provided by the solar cells in our case), the function
Dk|k(x|Z) represents the PHD for a tracking area x (an apart-
ment in our case). For example, if the number of people in
the tracking area is two, the integration of the PHD over that
area should equal two [13, 12], which is represented by K̂.

Particle Filter Implementation. The PHD can be imple-
mented deploying a number of particles over the tracking
area. The overview of the particle PHD implementation is
shown in Fig. 10. To demonstrate the PHD filter algorithm,
we divide the tracking area into three cells: cell 0 to cell 2
from left to right. Each cell is covered by a different solar
sensor.

At the start of the algorithm, m number of particles with
equal weight are generated. The particles are distributed uni-
formly over the entire tracking area ( m

3 particles in each cell),
as illustrated in stage 1 in Fig. 10. This initial distribution
indicates that each tracking area is equally likely to have tar-
gets present. In Fig. 10, we use the sizes of the circles to
indicate their weights. As the targets move, and the sensors
provide information, the particles will increase their density
on the cells where the targets are present. To estimate the
number of targets, the integral in Eq. 5 can be transformed
into the following sum,

∑Wp(x)≈ K̂, (6)

where Wp(x) represents the weight of the particles. Simi-
lar to the PHD, the summation of the weights of all particles
will effectively provide an approximation of the number of
targets in the area.

Operation 1: Prediction. Targets will move around, and
they will also join or leave the tracking area. To predict these

dynamics at each timestep, the value of the PHD filter is
updated using the underlying motion models of the targets,
which can be described with the following equation:

(7)Dk+1|k(x) = bk+1|k(x) +
∫
(ps(w) fk+1|k(x|w)dw.

Three types of dynamics are described in Eq. 7 to predict
the location of a target at the next time step. The survival
probability ps(w) describes the probability that the current
targets remain in the tracking area. The birth model bk+1|k(x)
describes the probability that a new target enters the tracking
area, and the fk+1|k models describe the probability that a
target moves to the neighboring cells.

Particle Filter Implementation. In our implementation,
the survival probability is set to 0.7, the birth probability is
set to 0.01, and the motion model follows the probabilities
depicted at the bottom of stage 2 in Fig. 10. For demonstra-
tion clarity, only the particles initialized in cell 0 are shown
starting from stage 2. To showcase how these three dynam-
ics modify the density of particles, we use the transition from
stage 2 to stage 3 in Fig. 10. A small amount of particles are
deleted, while others are created (red dots). These two ef-
fects jointly represent the chance that targets enter or leave
the tracking area. And based on the average walking speed
of humans, the motion model predicts how far the particles
can move.

Operation 2: Update. After predicting the movement
of the targets, we use the solar sensing output Zk+1 received
at time k + 1 to update the weights of the particles. Parti-
cles where the sensor detects presence increase their weight
and particles where the sensor indicates an absence of targets
decrease their weight. The general equation describing this
step is:

Dk+1|k+1(x)∼= Fk+1(Zk+1|x)Dk+1|k(x), (8)

where the function Fk+1(Zk+1|x) indicates the update ap-
plied by the measurements.

Particle Filter Implementation. In the example, we have
two targets present in cell 1 and cell 2, which are indicated
by green shades in stage 4 in Fig. 10. The detection results
of cell 1 and cell 2 are positive, therefore, the corresponding
particles are updated with a higher weight than particles in
cell 0. After the weights are updated, the expected number
of targets can be calculated by summing up the weights of
the particles.

The tracking algorithm provides the estimated positions
for current targets at each timestep. A stream of estimated
position data is received over time, which needs to be con-
verted to tracks. We use a distance association to determine
which track these estimations belong to. For each estima-
tion at a time step, the distances between the new estimated
position and the existing tracks are calculated and assigned
into the closest tracks. This produces the final track of each
target, which we will look at in the evaluation section.
4.2 Evaluation

To evaluate the performance of the tracking algorithm in
a controlled manner we use a simulated setup. The layout of
the scene and the paths are shown in Fig. 11. In the simulated
scenario, two targets walk in opposite directions at the same
speed. Target 2 enters the scene when Target 1 is in cell 1.
The whole area is divided into five evenly spaced areas, each
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with a solar cell. To test the resilience of the PHD filter to
noisy data, we consider three types of scenarios:

• True detection (TD) - All sensors are able to correctly
detect targets when they are in the corresponding detec-
tion areas.

• False negative (FN) - The sensor located in cell B’ is set
to always output ’False’ and not detect any target.

• False positive (FP) - The sensor in cell B’ is set to al-
ways output ’True’ for 1 s when both targets are moving
into cell D’ (2.75≤ t ≤ 3.75 ).

Fig. 12 shows the simulated tracks and the estimated
tracks from the particle PHD algorithm. In the test scenario
TD, the algorithm is able to identify the tracks of the two
targets correctly, as shown in Fig. 12a. For the scenario with
FNs, the tracking algorithm struggles to correctly identify
the track in cell B’, as shown in 12b. This occurs because
particles in cell B’ will always receive lower weights, mak-
ing it less likely to form a cluster. However, even though a
target at cell B’ cannot be detected, the tracking algorithm
is able to successfully track both targets once they pass cell
B’. This is because of two reasons. First, a few particles
are able to move past the cell with consistent FNs accord-
ing to the state transition model (note that the motion model
in stage 2 has a 10% probability of moving two cells apart,
Fig. 10). Second, thanks to the inherent birth model of PHD
filters, a number of particles are generated in arbitrary areas
at each timestep, allowing targets to re-emerge. The results
of the test scenario with FPs are shown in Fig. 12c. While
the presence of FPs have some effect on the estimated track,
the algorithm is able to filter most of this noise because the

motion model leaves only few particles in cell B’.
From the evaluation results, we can see that the track-

ing algorithm has the ability to ameliorate the presence of
FNs and FPs that may not have been filtered by the detection
framework in Section 3. This capability will be valuable in
noisier environments, as presented next.
5 Experimental Evaluation

In this section, we describe the evaluation carried out to
showcase the contribution of our work. We show that de-
spite the challenges posed by the changing ambient light
levels and the presence of multiple targets, the combina-
tion of a good placement of solar cells, detection using
the BOCD algorithm and tracking using the PHD algo-
rithm shows promise as a potential solution for indoor tar-
get tracking. The overview of the hardware setup is shown
in Fig. 13a. Six sensing devices are deployed in the envi-
ronment, and each sensing device consists of a solar cell, a
microcontroller (MCU) and a battery. The sensing devices
communicate with a base station, where the data processing,
detection and tracking are done.

The tags designed for evaluation are built on an ESP32
microcontroller development board as shown in Figure 13b.
A small 39 mm x 35 mm solar cell with a nominal output of
4 V, 35 mA is connected to the 10-bit ADC of the micro-
controller. The circuit connecting the solar cell consists of
a simple voltage divider to work within the input range of
the ADC, and a 100 nF decoupling capacitor. The devices
communicate the ADC data to the PC, which acted as the
base station. Data is sent over Bluetooth at a rate of 100 Hz,
which is more than necessary for running the algorithms but
allows for extra analysis if needed. In our system, we use the
ADC embedded in the microcontroller. There are low-power
ADCs available in the market, for example, the ADS7042
consumes less than 1 µW at 1 kSPS, which can be used to
further reduce the power consumption in sampling.

5.1 Experiment configurations
The experiments are carried out in an indoor residential

environment. The floorplan of the environment is shown
in Figure 14a, which also shows the positions and field-of-
views of the solar cells. The area is divided into 6 smaller
cell areas. Letters A-F represent the labels of the solar cells,
while A’-F’ represent the different areas covered by solar
cells. Given that the distance from the paths to the sensors
are similar to those considered in Section 2, we place the
solar cells according to the optimal placement (35 cm high
with a -25 angle), except for places where the furniture re-
quires placing them higher, in which case we use a ’medium’
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Figure 12: Position estimation results for three different datasets.
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Figure 13: Hardware setup.

placement (110 cm high with a -10 angle).
The experiments have been carried out multiple times

while changing three variables: the number of targets (1
or 2), the light source (only natural light during the day or
artificial light from lamps at night) and the distance of the
target to the sensors when passing by (‘far’ at 150 cm, or
‘close’ at 50 cm). Table 2 shows all the combinations of
variables. During the experiment, each configuration is re-
peated three times. The targets are instructed to walk a fixed
sequence of cells. They do this at a normal walking speed
while also keeping to the requirement of passing the solar
cells at ‘far’ or ‘close’ distance. The path trajectories are
shown in Fig. 14b and Fig. 14c. The walking paths are:

• 1 target
– P1: (start outside B’)-B’-C’-D’ (wait approx. 5

seconds) -C’-B’-A’- (exit at cell A’)

• 2 targets
– P1: (start outside B’)-B’-C’-E’-F’ (wait until P2

enters C’) -E’-C’-B’-A’ (exit at A’)

– P2: (start outside A’, wait until P1 is at F’) -A’-B’-
C’-D’ (wait until P1 enters B’) -C’-B’(exit)

5.2 Results
The associated tracks are automatically produced by the

algorithm. We use brackets to indicate False Positives. For
example, the notation (A’) indicates that the tracking output
shows that the target passes by cell A’, while in reality the
target does not (caused by FPs). Similarly, square brackets
indicate missing cells in the output. The notation [A’] in-

Table 2: All combinations of variables used for the experi-
ment. Note that each combination was repeated three times.
A far distance is 150 cm, a close distance is 50 cm.

No. of targets Light distance
1 Natural light Close
1 Natural light Far
1 Artificial light Close
1 Artificial light Far
2 Natural light Close
2 Artificial light Close

dicates that the target passes by cell A’, but this is missed
by the tracking algorithm (caused by FNs). In Fig. 15, the
α markers show the FPs in the detection results and their
corresponding effects on the tracking results. The markers β

show the FNs in the detection results and their corresponding
effects on the tracking results.

Among the six experiments shown in Table 2, we se-
lect three to showcase the performance of Inti. One benign
setup, where the signals are relatively clean; one medium-
level setup, which is noisier; and one hard setup, where there
are several false positives and negatives. These three sample
scenarios are described next.
5.2.1 An Easy Tracking Scenario

Fig. 15a shows an experimental situation with mostly
correctly detected changepoints. This experiment was con-
ducted with 1 target walking close to the solar cells during
the day. The blue bars denote the outcome of the tracking al-
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Figure 15: Solar cell outputs with marked detections and corresponding tracking outputs. Green indicates the actual track of
target 1, and yellow indicates the actual track of target 2.

gorithm and the green bars the ground truth. In this scenario,
as the target walks close to the solar cells, clear changepoints
can be detected, resulting in correct detections, except for the
FPs marked with α1 and α2 in cell E’. These FPs also appear
in the tracking outputs, but they are not significant errors be-
cause they occur due to the presence of contiguous cells in
the layout of the apartment. Note that as the target walks
from cell B’ to cell C’, the path is at the border of cell E’,
which also detects the presence of the target. The tracking
output from the algorithm is B’-(E’)-C’-D’-C’-(E’)-B’-A’. In
a way, this ‘contiguous’ redundancy validates the robustness
of the approach.

5.2.2 A Medium Tracking Scenario
Fig. 15b shows an instance where more misdetections are

present. This experiment was conducted with 1 target walk-
ing far from the solar cells at night. The walking path of
the target is the same as in Fig. 15a. As the target walks

far from the solar cell, the variation of light on the tag is
smaller, leading to noisier signals. In this scenario, the de-
tection algorithm recognizes when the target appears in the
area through cell B’, but assumes that the target remains for
a long time in cell C’, which is incorrect. This is indicated
by α3 in Fig. 15b. This occurs because, in cell C’, the system
merges two short detection events as one long detection: the
signals ending the first event and starting the second are too
weak to be detected (FNs), and hence the system combined
the starting changepoint of the first event with the ending
changepoint of the second event. In addition, when the tar-
get walks far from the solar cells, unintended disturbances
can occur to cells that they do not pass through, causing FPs.
This is indicated by α4 and α5 in cell F’. For α1 and α2, the
cause of these FPs is similar to the previous case in Fig. 15a,
as the target follows the same path. Note however that in
spite of the noisier data, four out of the five misdetections
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Figure 16: Visual representation of the detection output for
all solar cells for different time windows. A darker color
means that the solar cell is detecting a target for a longer
time period during that window.

are filtered out correctly, and the only FP remaining in the
estimated blue track is α2, which as stated before is not a
major issue because it is due to contiguous cells. The track-
ing output from the algorithm is B’-(E’)-C’-D’-C’-B’-A’.
5.2.3 A Difficult Tracking Scenario

Fig. 15c shows the performance of an experiment con-
ducted with 2 targets walking close to the solar cells during
the day. To interpret Fig. 15c better, Fig. 16 shows the detec-
tion output for different time windows. As this experiment
was conducted during the day, the results are subjected to
the inconsistency of the natural light levels. Natural light is
stronger than artificial light and has a more horizontal radi-
ation. As can be seen from Fig. 15c, many sudden events
happen, causing the natural light level to fluctuate, which re-
sults in noisy detection outputs.

In the first 5 seconds, target P1 enters the area from cell
B’, which is detected correctly, as marked with γ1. However,
solar cells A and E have FPs at the same time, which are
marked with α1 and α2. In this case, the tracking algorithm is
able to filter out those FPs and correctly estimate the position
to be in cell B’. However, it also mistakenly identifies that the
target passes cell E’, marked by α2. Similar to the previous
scenarios, as cell E’ borders with most cells, it has many
FPs. Between t = 10s and t = 15s, the target in cell A’ is not
recognized, which is marked by β1 in Fig. 15c.

Overall, similar to the prior scenarios, despite the FPs and
FNs of the detection results, the tracking algorithm is still
able to recognize the majority of the target paths as shown
by the overlap between the estimated paths (blue bars) and
the ground truth (green and yellow bars).

In conclusion, being able to correctly track passing tar-
gets in an indoor environment is a joint effort between solar
cell placements, the detection algorithm and the tracking al-
gorithm. In a real indoor deployment, the solar cell outputs
tend to be quite noisy and are subject to many FNs and FPs.
This can cause misdetections to occur. However, the tracking
algorithm is able to filter out much of the noise.
5.3 Discussion

This work provides a starting point towards realizing
energy-neutral indoor tracking with solar cells. In this sec-
tion, we discuss the limitations of the current system that can
be improved on.

1. The inputs to the simulator are based on assumptions of

the environment, such as the type of reflections and the
reflection coefficients from walls and furniture based on
their materials. An experimental characterization can
be carried out to obtain more accurate reflection char-
acteristics, however, they will result in a more time-
consuming process. In addition, only artificial light is
considered in the simulator. It would be interesting to
include the effects of natural light.

2. A limitation of the system is that the prototype devel-
oped for evaluation requires an external power source.
A more detailed power and circuitry analysis is required
to power the system solely with the solar cells. The re-
search community is working on optimal methods to
attain simultaneous harvesting and sensing, and such
methods can be integrated with our solution. The value
of our work is to showcase the challenges and potential
solutions related to using solar cells for detection and
tracking.

6 Related Work
6.1 Visible Light Sensing

Visible light sensing (VLS) focuses on sensing objects by
exploiting the influence of the object on visual light within
the environment [4]. Visible light positioning (VLP) is a type
of VLS concerned with finding the positions of targets in
an area. In VLP with passive users, the system detects the
presence of targets based on the shadows and the reflections
they cast on a light sensor.

Many methods in passive VLP require the use of active
sources. An active source is a light source that provides il-
lumination, but has data modulated in the light as well by
an adapted LED driver [7, 9, 16, 24]. A few studies have
explored the use of passive sources, for which no modifica-
tions to the existing lighting infrastructure have to be made.
However, these studies require the use of offline learning,
which is called fingerprinting, prior to deployment. During
the offline learning, the outputs of different receiver signal
strengths are stored for different situations. Once deployed,
it uses the knowledge of these values to estimate the state of
the current situation [8, 5, 22]. A disadvantage of fingerprint-
ing is that it requires a separate learning phase to implement
for each new environment. Furthermore, it is not very robust
in situations where the lighting situation is not constant as
the signal strength is not only influenced by the presence of
targets, but by environmental lighting conditions as well.

Similar to some of the above studies, our approach does
not require users to carry any device. The main advantage
of our approach, however, is that we do not require modifi-
cations of the lighting infrastructure or heavy fingerprinting
phases.
6.2 Sensing with Solar Cells

Many types of sensors can be used for indoor tracking,
such as cameras, infrared or ultrasound sensors [3, 19, 6].
While modifications can be applied to reduce the resolution
such that these sensors do not have sufficient resolution to
identify people, solar cells are one step further in preserving
privacy, since they are essentially a single-pixel device and
we are treating the output as a binary data point (presence/
absence). Another main advantage of employing solar cells



as sensors is the potential of providing simultaneous power
generation and sensing. In mass-deployed systems, this re-
duces the need for battery replacements. There is a grow-
ing interest in adopting solar cells for indoor applications.
However, most of these designs focus on active communi-
cation and interaction applications with the solar cells, and
very few examples utilize them for sensing. For example,
in SolarGest [11], a transparent solar panel is used to dis-
tinguish a number of hand gestures, but the range is limited
to only a few centimeters. In [21] a solar cell is combined
with a comparator circuit to generate a binary output with-
out the use of an ADC. This light-based approach combined
with RF backscatter results in a battery-free device. How-
ever, the basic thresholding circuit used for generating the
binary output is only suitable for a very controlled environ-
ment. In [18], solar cells are used as wearable devices for
tracking human activities. However, this type of tracking re-
quires the active participation from users, as users have to
attach solar cells to their bodies. Our work is motivated by
these studies about the use of solar cells as sensors, but we
target a challenging application with longer distances, and
noisier setups, between the solar cells and the targets.

7 Conclusion
In Inti, we propose a novel multi-target indoor track-

ing system based on solar cells. Our framework proposes
three components. First, we develop a ray-tracing simula-
tor to determine the best placements for solar cells. Our
approach leads to placements that result in a high signal to
noise ratio as targets walk by. Second, we apply an online
Bayesian changepoint detection method to the received so-
lar cell signals to convert them into binary detection signals.
The Bayesian method is able to achieve consistent detection
results in different illumination conditions. Third, we ap-
ply the PHD filter to combine the detection results from dif-
ferent tags. This approach allows us to filter several false
positives/negatives and to perform tracking without knowing
the actual number of targets in the environment. Finally, we
evaluate our framework in a small apartment, and show that
Inti is able to track people under different lighting conditions,
both during the day with uncontrolled lighting, as well as at
night with controlled lighting.
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