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Abstract
Over the past years, various low-power wireless protocols

based on synchronous transmissions (ST) have been devel-
oped to meet the high dependability requirements of emerging
cyber-physical applications. For example, Wireless Paxos pro-
vides consensus, a key mechanism for building fault-tolerant
systems through replication. However, Wireless Paxos and
other ST-based protocols are themselves not fault-tolerant:
They suffer from a single point of failure that fundamentally
impairs the availability of the communication service in the
presence of node crashes and network partitions.

We present BUTLER, a mechanism that allows remov-
ing the single point of failure in many ST-based protocols.
BUTLER synchronizes all nodes in the network so that the
communication process can be jointly started by multiple ran-
domly chosen nodes rather than a single dedicated node. We
analyze and formally prove the correctness of BUTLER and
implement it on the state-of-the-art nRF52840 platform. Ex-
periments on the FlockLab testbed demonstrate that BUTLER
reliably synchronizes the network to within ± 3 µs despite
large initial offsets, unpredictable node failures, and network
partitions. BUTLER’s temporal overhead ranges well below
1 %. Because of this efficiency and effectiveness, our results
further indicate that BUTLER can dramatically improve the
availability of an existing ST-based protocol without any no-
ticeable impact on the overall communication reliability and
efficiency.

Categories and Subject Descriptors
C.2.1 [Computer-communication Networks]: Network

Architecture and Design—Wireless communication; C.3
[Special-purpose and Application-based Systems]: Real-
time and embedded systems
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Design, Experimentation, Reliability

Keywords
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1 Introduction
In recent years, wireless sensor networks (WSNs) have

become an integral part of cyber-physical systems (CPS) and
the Industrial Internet of Things with applications ranging
from personalized medicine through infrastructure control to
smart factories. WSNs offer unprecedented flexibility and
cost efficiency in terms of installation, operation, and mainte-
nance compared to wired communication systems [4, 16, 25].
However, as defined by the International Society of Automa-
tion, the dependability of the wireless communication service
is essential in these critical application domains, where small
disruptions can cause system outages involving huge financial
losses or even catastrophic consequences [36].

In parallel to advances in hardware enabling more capable
yet ultra-low-power microcontrollers, communication proto-
cols have also evolved. With Glossy [8], synchronous trans-
missions (ST) became popular, and many different ST-based
protocols emerged in the following years that greatly outper-
form the traditional link-based protocols [38]. For example, in
the EWSN Dependability Competition [29], which attracted
participants from industry and academia, teams with ST-based
protocols consistently placed in the top three ranks. These
new protocols can satisfy higher application requirements and
make WSNs suitable even for demanding closed-loop control
applications [22, 33]. One of the key advantages of many
ST-based protocols is their topology-independent protocol
logic, which provides unprecedented resilience and flexibil-
ity as required, for example, in highly dynamic application
scenarios with mobile robots [4] or drone swarms [11].
Problem. From an application’s perspective, a dependable
communication service should transport messages reliably
across the network and be available when needed to ensure
efficient and timely message delivery. State-of-the-art ST-
based protocols [38] provide a highly reliable and efficient
message transport. Furthermore, protocols like Virtus [7] and
Wireless Paxos [24] provide mechanisms (virtual synchrony
and consensus) to build higher-layer fault-tolerant systems.



Despite these achievements, these protocols are themselves
not fault-tolerant: already the failure of a single node can lead
to the unavailability of the communication service in the entire
network. The fundamental problem is that ST-based proto-
cols require tight time synchronization, which is achieved
by selecting a particular node, often named initiator (see,
e.g., [8, 18, 13]), that provides a time reference. Typical faults
in WSN deployments (e.g., due to software/hardware failures,
fabrication problems, environmental factors, adversarial at-
tacks, and battery depletion [15]) can cause the initiator and
hence the communication service to fail. Moreover, the sin-
gle initiator is also a problem when the network splits into
different partitions, for example, because the node connectiv-
ity is affected by environmental factors such as obstacles or
interference and by moving nodes (e.g., a swarm of drones
splitting up in flight). In these situations, the single initiator is
only part of one partition, and the nodes in all other partitions
are no longer able to exchange any messages.

Contribution. To solve the availability problem, we present
the design, theoretical analysis, and experimental validation
of BUTLER, a lightweight and distributed synchronization
mechanism. BUTLER enables ST-based protocols to distribute
the role of the initiator across multiple nodes (randomly se-
lected at runtime) so that all non-faulty nodes that are physi-
cally able to communicate can do so at the required time. To
achieve this, BUTLER uses a fully decentralized and highly ef-
ficient mechanism where nodes probabilistically propose and
distribute reference times using short messages that feature
a natural order. This order allows nodes to quickly converge
toward the same accurate reference time despite possible node
failures, message losses, and network partitions. Afterward,
communication can be initiated in a dependable way by mul-
tiple synchronized initiators, which is key to leveraging the
efficiency and reliability of ST.

After describing the design of BUTLER in Sec. 3, we for-
mally analyze and prove its correctness in Sec. 4. Sec. 5
presents an open-source implementation of BUTLER on the
popular nRF52840 platform, which we use in Sec. 6 to evalu-
ate performance and efficiency on the FlockLab testbed [34].
Our results demonstrate that BUTLER reliably synchronizes
all nodes in the network to within ± 3 µs despite large ini-
tial time offsets and unpredictable node failures. BUTLER
achieves this while incurring only a minimal temporal over-
head that ranges below 1 % in realistic scenarios. Moreover,
experiments with Mixer [13], an existing ST-based commu-
nication protocol, show that communication performance in
terms of latency and reliability significantly decreases when
using multiple initiators. When instead extending the standard
Mixer protocol with BUTLER to synchronize the initiators,
our results indicate no performance degradation: latency and
reliability are at least as good as for the original Mixer with a
single initiator while providing superior availability.

In summary, this paper contributes the following:
• The design of BUTLER, a lightweight and distributed

synchronization mechanism that pushes the availability
of ST-based protocols to previously unseen heights.

• A rigorous theoretical analysis of BUTLER, including a
formal proof of BUTLER’s correctness.

• Real-world experiments that validate the theoretical anal-
ysis by demonstrating outstanding synchronization accu-
racy at minimal temporal overhead despite node failures.

• A case study demonstrating that BUTLER increases the
availability of a state-of-the-art ST-based protocol with-
out sacrificing overall communication performance.

2 Motivation and Background
Providing high availability in WSNs is an important yet

unsolved research problem. The problem originates from the
dependability requirements of emerging CPS applications.
We discuss these requirements next, then review previous
approaches toward providing dependability in WSNs, and,
finally, state the problem. Sec. 7 discusses existing work that
is most closely related to our specific contributions.
Application requirements and fault model. WSNs offer
high flexibility and cost efficiency, making them a key build-
ing block for many current and future CPS, including mission-
and safety-critical applications [4]. In addition to high per-
formance demands, these applications require a dependable
communication service that enables reliable data exchange
and is available when needed despite certain failures [36].

We define a communication service to be available if mes-
sages can be exchanged at the required time (i.e., as requested
by the application or a high-layer protocol) between all nodes
in the network that are physically able to communicate with
each other (i.e., when the signal-to-interference-plus-noise ra-
tion between these nodes is high enough to permit information
transfer). Providing availability thus requires robustness and
fault tolerance such that failures of individual nodes do not
affect the availability of the communication service between
the non-faulty nodes.

WSNs are deployed at scale and consist of many low-
cost, resource-constrained embedded devices that can fail for
various reasons [5]. For example, because of software and
hardware faults or depleted batteries, nodes may suddenly
stop working (i.e., fail-stop). Nodes may also recover from a
failure and resume operation (i.e., crash recovery). In addition,
the environment of the deployment also has a significant
impact on the network. Due to obstacles, external interference,
and node movement, the communication links are constantly
changing, which leads to time-varying message losses and
may split the network into several isolated partitions. While
we consider all aforementioned types of failures (i.e., node
crashes, message losses, and network partitions), we do not
consider Byzantine (i.e., erratic or malicious) faults. That is,
we assume that a node works according to its specification
whenever it is operational, and modifications to messages
during transmission can be reliably detected (e.g., using error
detection codes such as a cyclic redundancy check (CRC)).
Dependability in WSNs. Early WSN protocols adopted link-
oriented and routing-based communication techniques [10] to
meet the requirements of uncritical applications (e.g., environ-
mental monitoring [32]). Yet, already in 2003, Stankovic et
al. noted the importance of real-time and dependability guar-
antees in WSNs to meet the requirements of more demanding
applications, such as those involving control [31].

Motivated by the growing importance of such CPS appli-
cations, recent WSN protocols based on ST have been shown
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Figure 1: BUTLER is executed right before scheduled communication to synchronize the network. This removes the need for a
single initiator in ST-based communication protocols, which increases their availability. The example shows how 4 nodes (n1 -
n4) with a maximum initial offset of ∆ tofs synchronize their local slot grids. The contents of the sync messages (Tτ and σ) are
shown inside the slots, whereas Tτ is expressed in terms of the remaining number of slots until BUTLER terminates. Initially, n1 -
n3 synchronize on the proposed reference time of n1, but re-synchronize upon reception of the earlier reference time from n4.

to provide real-time guarantees [37] and certain dependability
properties. For example, Virtus [7] provides atomic multicast
and view management, while A2 [3] and Wireless Paxos [24]
provide distributed agreement and consensus. These depend-
ability properties are fundamental to building fault-tolerant
systems through redundancy and replication [28]. Providing
these properties has been possible since ST allow the proto-
col logic to abstract away the complexity and dynamics of
wireless networks. For instance, the temporary or long-term
failure of individual wireless links can be smoothly handled
by the spatio-temporal diversity of the ST technique [38].

Problem statement. However, ST-based protocols cannot
deal with the failure of critical nodes, such as the node that
initiates the communication process. Wireless Paxos, Virtus,
A2, and many other ST-based protocols (e.g., [8, 18, 13]) rely
on one dedicated initiator that starts a packet exchange by
transmitting first. This single initiator is a serious threat to
the protocols’ availability: a failure of this node prevents any
communication in the network as all other nodes will keep
waiting for an incoming transmission event that never occurs.

The reason for the single initiator is the need for an accu-
rate time reference. ST require tight synchronization across
nodes which must minimally satisfy the constraints set by
the capture effect (e.g., 160 µs for IEEE 802.15.4) known as
capture window [18]. If the time offsets of nodes exceed
the capture window, communication becomes inefficient and
unreliable.

To solve the availability problem, an ST-based protocol
should ideally use a large set of multiple initiators, randomly
and independently selected at runtime before every individual
packet exchange. The problem, however, is that the nodes,
and therefore the set of potential initiators for the next packet
exchange, quickly get out of sync due to the inevitable clock
drift between nodes. For example, the IEEE 802.15.4 stan-
dard [1] requires a clock drift of at most ± 40 ppm, which
means that in the worst case, two initially perfectly synchro-
nized nodes violate the capture window already after 2 s.

Based on these requirements, a scheme is needed that syn-
chronizes the nodes to within the size of the capture window.
Moreover, an effective synchronization mechanism must it-

self be fault-tolerant under the above-mentioned fault model,
and be lightweight (i.e., low overhead) to avoid negatively
affecting the overall communication performance.
3 Design

We introduce BUTLER, a synchronization mechanism that
solves the problem outlined above to boost availability. Be-
fore presenting the details of BUTLER’s design, we provide a
high-level overview and state the scope of our work.

3.1 BUTLER Overview
BUTLER is a lightweight and distributed synchronization

mechanism that is designed to directly integrate with existing
communication protocols. It does not require periodic activ-
ity and is executed right before a scheduled communication
round, as illustrated in the upper part of Fig. 1. BUTLER
reliably establishes a common reference time τ among nodes
despite node failures, message losses, and network partitions
such that multiple initiators can start the communication pro-
tocol at the same time.

Because of clock drift, the nodes are initially unsynchro-
nized and start BUTLER with different time offsets tofs, as
shown in the lower part of Fig. 1. We assume a maximum
initial offset ∆ tofs between the nodes, which can be calculated
based on the current communication period and the known
maximum clock drift. During the execution of BUTLER, the
nodes probabilistically exchange sync messages. Each sync
message is associated with a certain reference time. Using
BUTLER, the nodes always synchronize to the earliest (mini-
mum) reference time and propagate this reference time further
in the network. Eventually, all nodes have the same reference
time, which marks the end of BUTLER.
Scope. BUTLER is just one important piece of the puzzle to
achieve high availability of the overall system. Specifically,
BUTLER is meant to improve the availability of ST-based
communication protocols that are responsible for the mes-
sage exchange among nodes (Chaos [18], Mixer [13], and
others [38]). These protocols, sometimes also referred to
as communication primitives, can benefit from BUTLER if
they are in principle able to support multiple initiators—any
protocol that does not fulfill this requirement cannot provide
availability! The necessity for multiple initiators rules out



protocols that can only realize a one-to-all message exchange
in each execution (e.g., Glossy [8]) since there can only be
one specific source node by design. Moreover, all protocols
that build upon such protocols, e.g., the Low-Power Wireless
Bus [6] or Crystal [14], are therefore inherently limited and
cannot be made available with BUTLER. Higher-layer WSN
protocols that also perform network management tasks at one
dedicated node (e.g., scheduling) require additional mecha-
nisms to provide availability by avoiding this single point of
failure.

3.2 BUTLER in Detail
In the following, we will explain the structure and opera-

tion of BUTLER. Additionally, we will discuss certain design
decisions and their impact.
Slot grid and sync message. In BUTLER, each node follows
a local slot grid, as shown in Fig. 1, which is defined by the
grid reference tgrid and the slot length Tslot. While Tslot is
fixed and known to all nodes, each node uses tofs, the time
at which it started BUTLER, as their initial tgrid. During the
execution, nodes exchange sync messages to align their local
slot grids and determine a common τ. Because the nodes
align transmissions to their local slot grid, the receiving nodes
will know the grid reference t̂grid of the sender based on the
receive timestamp. Each sync message is associated with a
certain τ and contains two pieces of information: The duration
Tτ, which is the time from t̂grid until τ, and origin σ, the ID of
the node that sent the particular τ for the first time. Note that
sync messages with the same σ always describe the same τ.
We use the size of a sync message to determine Tslot, because
we want concurrent transmissions with the same σ to either
overlap completely or not at all.
Operation. We explain BUTLER’s operation based on the
example in Fig. 1 and directly refer to the relevant lines in
Algorithm 1. At the beginning, the nodes initialize the remain-
ing BUTLER duration Tτ (i.e., the time until τ) as a multiple
of Tslot (line 2). The grid reference tgrid and Tτ are used to
determine the initial τ (line 4). Furthermore, all nodes start
unsynchronized and set σ to 0 (line 5). BUTLER’s main loop
(line 7) is executed once per slot, at the end of which tgrid
and Tτ are updated accordingly (lines 22-23). At Tτ = 0, τ

is reached and BUTLER terminates. In each slot, the nodes
decide independently whether to transmit a sync message
or listen. We start with the transmit decision and explain
reception afterward.

The transmit decision is made with probability PTX (line
9). If σ = 0, the node is still unsynchronized and will propose
its own τ to the network, setting σ to its node ID (lines 10-11).
The node then aligns the start of the transmission to the next
slot (tgrid +Tslot) and sets the duration in the sync message to
Tτ−Tslot (line 13). This is the case for the first transmission
of n1 and n4 in Fig. 1.

In case a node decides not to transmit, it will listen for an
incoming sync message. After a successful reception (line
16), the node computes the reference time τ̂ associated with
the sync message (line 17). If σ = 0 or the received τ̂ is earlier
than τ, the node synchronizes to τ̂ (lines 18-19). The rationale
behind this is that the earliest reference time had the most time
to propagate through the network and therefore is expected to

Algorithm 1 BUTLER

1: procedure BUTLER START ( )
2: Tτ← slots∗Tslot ▷ Remaining duration
3: tgrid← tofs ▷ Slot grid reference
4: τ← tgrid +Tτ ▷ Reference time
5: σ, tx← 0

6: ▷ Each loop iteration corresponds to one local slot ◁
7: while Tτ > 0 do
8: ▷ Make transmit decision ◁
9: if tx or (PTX > RANDOM()) then

10: if σ = 0 then
11: σ← ni
12: ▷ Transmission starts at tgrid +Tslot ◁
13: TRANSMIT(Tτ−Tslot, σ)
14: tx← 0
15: else
16: if RECEIVE() ̸= 0 then
17: τ̂ = t̂grid + T̂τ ▷ Received reference time
18: if (σ = 0) or (τ̂ < τ) then
19: SYNC ()
20: else if (τ̂ = τ) and (σ̂ < σ) then
21: SYNC ()
22: tgrid← tgrid +Tslot
23: Tτ← Tτ−Tslot

24: procedure SYNC ( )
25: σ, Tτ, tgrid, τ← σ̂, T̂τ, t̂grid, τ̂

26: tx← 1 ▷ Relay new τ in the next slot

reach the most nodes compared to other reference times. In
Fig. 1, n2 and n3 synchronize to their first reception (RX and
sync) because of σ = 0 and later re-synchronize due to τ̂ < τ.
Synchronizing to a new reference time involves updating the
local information with the information from the sync message
and adjusting the local slot grid (line 25). To quickly spread
the new τ, the node will always transmit in the next slot (line
26). In contrast, n4 discards the first reception (RX no sync)
because it is synchronized to an earlier reference time, hence
the local slot grid remains unchanged as can be seen in Fig. 1.
In the unlikely case that both τ̂ and τ are equal, the node
synchronizes to the reference time of the sync message with
the lower σ (lines 20-21).

Using Algorithm 1, BUTLER aligns the local slot grids of
initially unsynchronized nodes to within Tcap, so that multiple
nodes can reliably initiate the communication process at the
same time in the subsequent communication round.

4 Analysis
After describing the design of BUTLER, we now theoreti-

cally analyze its synchronization behavior.
System model. We consider a system consisting of a set
N = {n1,n2, . . . ,nN} of N embedded devices (nodes). Each
node ni has a local clock that runs at a specific clock speed
νi, which may vary from node to node due to imperfect clock
sources (e.g., a crystal oscillator). The nodes have unique IDs
and are equipped with half-duplex RF transceivers to transmit



Table 1: State transition matrix for node ni in a network with N nodes. Reference times represent the different states and are
ordered from the latest (τ1) to the earliest (τN). Each entry describes the transition probability from one state to another. The
triangular form results from BUTLER’s behavior to synchronize only to earlier reference times.

To
From u τ1 τ2 . . . τi . . . τN−1 τN

u PRX (∅) PRX (τ1) PRX (τ2) . . . PTX . . . PRX (τN−1) PRX (τN)
τ1 0 PRX (∅)+PTX PRX (τ2) . . . 0 . . . PRX (τN−1) PRX (τN)
τ2 0 0 PRX (∅)+PTX . . . 0 . . . PRX (τN−1) PRX (τN)
. . . 0 0 0 . . . 0 . . . PRX (τN−1) PRX (τN)
τi 0 0 0 0 PRX (∅)+PTX . . . PRX (τN−1) PRX (τN)

. . . 0 0 0 0 0 . . . PRX (τN−1) PRX (τN)
τN−1 0 0 0 0 0 0 PRX (∅)+PTX PRX (τN)
τN 0 0 0 0 0 0 0 1

and receive messages wirelessly. Communication over the
shared wireless medium is unreliable, and the probability of
successful packet reception is always below 1. Moreover, we
assume that nodes do not have access to external synchroniza-
tion sources such as GPS and must exclusively synchronize
via communication. In general, multi-hop communication
is needed to reach all nodes in the network because of the
limited communication range. Due to environmental factors
(e.g., interference), node faults, or node mobility, the network
can split into partitions. We define a network partition as a
subset of N where all nodes in the same partition can bidi-
rectionally exchange information with each other over one or
more hops.

4.1 Correctness of BUTLER

The goal of BUTLER is to achieve synchronicity among
the nodes in the network such that multiple nodes can safely
initiate the upcoming communication round (i.e., within the
capture window Tcap). Therefore, BUTLER is correct if the
maximum difference ∆τ between the reference times of all
nodes in the same network partition does not exceed Tcap.

Equal clock speeds. We begin with the simpler case, assum-
ing all clocks run at the same speed, and prove the correctness
of BUTLER for nodes in the same network partition.

LEMMA 1. If all clock speeds are equal, then there is a
unique total order of all reference times over the entire execu-
tion of BUTLER.

PROOF. Reference times in BUTLER have a natural temporal
order. If two reference times are equal, we select the reference
time with the lower σ as the earlier one. However, nodes in
BUTLER do not have a shared time base, so a sync message
describes the reference time relative to its transmission time
(τ = tgrid +Tτ). This relative duration is affected by the clock
speed of the transmitting node, which would not be the case
with absolute timestamps and a shared time base. Leveraging
the assumption that all nodes have the same clock speed, the
order of the reference times will be the same at any point
during the execution of BUTLER.

THEOREM 1. If all clock speeds are equal, BUTLER is cor-
rect.

PROOF. In BUTLER, the current reference time τ and its
origin σ essentially describe the state τσ of a node. Based
on Lemma 1 and without loss of generality, we assume the
following (arbitrary) order among reference times τ1 > τ2 >
... > τN , such that τN is the earliest. We can then create a
corresponding state transition matrix for a node ni, shown in
Table 1, with the different states represented by the reference
times. All nodes start in the unsynchronized state u, with
u > τ j for 1≤ j≤ N. The table entries describe the transition
probabilities, e.g., ni transitions from u to τ2 with PRX (τ2),
the probability of receiving τ2 from any other node. These
transition probabilities are highly dependent on the situation
and continuously change based on factors such as network
topology, environment, node behavior, as well as the state
of its neighboring nodes. In BUTLER, nodes propose their
own reference time only if they are in state u, i.e., they have
not received any other reference time. Consequently, other
nodes can reach τi only if ni proposes it in the first place.
Nodes remain in their current state if they either transmit
(PTX) or receive nothing (PRX (∅)), which includes receiving
later reference times that are ignored.

In a network partition, all nodes can communicate with
each other either directly or over multiple hops. Since the
nodes decide randomly and independently if they transmit
or listen, all transitions probabilities PRX (τ j) for proposed
reference times τ j in Table 1 are greater than 0. BUTLER en-
sures that transitions are only allowed toward earlier reference
times, leading to the triangular form of the state transition
matrix. Therefore, all nodes synchronize to the same refer-
ence time with high probability. Because we assume that all
clock speeds are equal, it follows that the pairwise difference
between the reference times of all nodes is ∆τ = 0 < Tcap,
which proves correctness.
Varying clock speeds. In the real world, the clock speeds of
the nodes are imperfect and may vary within a certain range,
specified by the frequency tolerance and stability properties of
the clock source (e.g., a crystal oscillator). We can determine
∆ν, which is the maximum clock speed difference between
two nodes based on the hardware specifications. For exam-
ple, the IEEE 802.15.4 standard [1] requires ∆ν = 80ppm
( ± 40 ppm). We now extend the correctness proof for varying
clock speeds by incorporating ∆ν.
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Figure 2: Local time vs. global time of nodes ni and n j
with ∆ν relative to each other. The nodes are synchronized to
different reference times. Three scenarios with different initial
offsets for n j are shown. Although the order of reference times
can change during execution, BUTLER is still correct.

LEMMA 2. Correctness of BUTLER can only be ensured if
the maximal execution duration TB ≤ Tcap/∆ν.

PROOF. We consider two nodes with ∆ν relative to each
other. Assuming that both nodes synchronize simultaneously
to the same reference time, they are perfectly time-aligned
at this point (∆τ = 0). As time progresses, the local times
of both nodes drift away from each other due to ∆ν, and
it takes Tcap/∆ν time to have a difference of ∆τ = Tcap be-
tween them. If BUTLER progresses further, correctness is
violated, although both nodes are synchronized to the same
reference time. Therefore, with varying clock speeds, it is
necessary to limit the duration of BUTLER’s execution to
TB = Tcap/∆ν.

THEOREM 2. BUTLER is correct as long as TB ≤ Tcap/∆ν.

PROOF. With varying clock speeds, the order of the reference
times can change during the execution of BUTLER. We will
now prove BUTLER’s correctness by analyzing the different
situations that can occur with two reference times proposed
by nodes ni and n j. Fig. 2 shows how the local times of ni and
n j progress compared to the global time. We assume that both
nodes have ∆ν relative to each other, with ni having the lowest
and n j having the highest clock speed. The nodes execute
BUTLER for a duration of TB according to the local time (y-
axis), leading to different execution times concerning global
time (x-axis). To visualize the different possible situations,
we depict three scenarios for n j, each with a different initial
offset (t0, t1, and t2) for the start of BUTLER, while ni always
starts at t0.

If n j starts BUTLER before t0, τ j will be earlier than τi for
the entire BUTLER execution. Similarly, if n j starts BUTLER
after t2, τi will always be earlier than τ j. In these cases, all
nodes eventually synchronize to the same reference time, and
because of Lemma 2, ∆τ will not exceed Tcap.

We now look at the case when n j starts BUTLER between
t0 and t2, for example at t1. Since ni starts BUTLER before n j,
τi is earlier than τ j, and nodes would synchronize to τi upon
reception. However, during the execution, the local time of
n j “overtakes” ni (intersection), and the order of the reference
times changes, i.e., τi > τ j. Depending on the initial offset of
n j, this can happen at any time during the execution, leading

to nodes possibly being synchronized to different reference
times when BUTLER terminates. Nevertheless, because of
Lemma 2, the difference ∆τ between the reference times is
less than or equal to Tcap.

As a result, either there is a unique reference time, or
all chosen reference times differ by at most Tcap, implying
BUTLER’s correctness.

4.2 Network partitions
BUTLER is a distributed synchronization mechanism with

probabilistic transmit behavior that seamlessly supports net-
work partitions. We assume that the network partitions can
arbitrarily change between executions of BUTLER but that
they remain stable while synchronization is ongoing, except
that nodes can leave or fail at any point in time. This assump-
tion is necessary to prevent a node with the earliest reference
time from joining a new partition at the end of BUTLER,
leaving no time for the other nodes in the partition to resyn-
chronize. However, this is usually not a problem since the
execution of BUTLER only takes a few tens of milliseconds
(see Sec. 6.3).

With symmetrical communication links, and based on our
definition of a network partition, all nodes that can commu-
nicate with each other must be in the same partition. Then,
the presented proofs apply directly to each network partition.
The state transition matrix in Table 1 would contain disjoint
sets of states with one set per partition, and the transition
probabilities between states of different sets would be 0 as no
messages can be exchanged.

However, with asymmetrical links, nodes from one par-
tition could receive a reference time τi from another node
that is not in the same partition. If τi is earlier than all other
reference times in the partition, all nodes will eventually syn-
chronize to τi. Otherwise, if there exists an earlier reference
time in the partition, then τi will be ignored. Therefore, the
correctness of BUTLER is not affected by network partitions
because it is irrelevant whether the node that proposed the
reference time is part of the same partition.

4.3 Discussion
Limited time to converge. Our analysis shows an interest-
ing area of tension between the theoretical proof of BUT-
LER’s correctness and the practical challenge that the dura-
tion of BUTLER’s execution is limited due to imperfect clocks
(∆ν ̸= 0). Whether the maximum duration TB of BUTLER (see
Lemma 2) is sufficient for the nodes to converge on a single
reference time depends on the network topology and environ-
ment, the node behavior, and the tolerance and stability of the
clock source. In general, a network can have arbitrarily weak
communication links so that the time to converge cannot be
bounded. However, as we show in the evaluation in Sec. 6,
these problems may be of low relevance in practice as the
time to converge is several orders of magnitude lower than
TB. Among others, one reason is that the number of proposed
reference times during the execution of BUTLER is low (as
discussed in Sec. 5) compared to the overall number of nodes
N, as most of the nodes will never propose their own refer-
ence time. Thus, the matrix in Table 1 will typically be sparse,
which reduces the convergence time.
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Figure 3: Packet structure of a sync message in BUTLER
using the IEEE 802.15.4 physical layer.

Impact of interference. During the execution of BUTLER,
the nodes will receive a reference time several times due to
the random transmit behavior; thus, missing some messages,
e.g., due to interference, can usually be compensated. In
general, stronger interference leads to more message loss and
increases the average time to converge but does not violate the
correctness of BUTLER, which is independent of the receive
probability. Note that a receive probability of 0 means the
node is not connected. In practice, stronger interference can
be proactively accounted for by deliberately extending the
duration of BUTLER.

5 Implementation
We have implemented BUTLER on the popular Nordic

nRF52840 platform using the IEEE 802.15.4 physical
layer [1]. The code is published as open source at https:
//gitlab.com/nes-lab/butler.
Usage of BUTLER. It is straightforward to combine
BUTLER with an existing ST-based communication pro-
tocol. BUTLER’s API consists of the single function
butler start(id), which takes the ID of the node as an
argument. During the execution, BUTLER takes care of cor-
rectly handling all interrupts and should not be interfered with
from the outside. Upon termination, the function returns the
final reference time and origin shortly after reaching it. At
this point, the nodes are synchronized and can start the next
communication round. BUTLER does not require periodic
or repeated execution and is scheduled on demand, provided
the maximum initial offset ∆ tofs based on the communication
period is known.
Sync message. Fig. 3 shows the structure of a sync message
for the IEEE 802.15.4 physical layer. The synchronization
header (SHR) is responsible for the capture window Tcap and
contains the preamble and the start of frame delimiter. SHR
and the length field (len) are mandatory parts of the communi-
cation standard. BUTLER adds the remaining duration Tτ and
the origin σ as payload, whose space requirements are known
at compile time but vary depending on the application and
network size. Since the duration of BUTLER is initialized as
a multiple of the slot length Tslot (line 2 in Algorithm 1), we
can represent Tτ in the sync message more compactly as the
number of remaining slots. To detect and filter out corrupted
packets, we use a hardware-supported CRC.
From design to implementation. BUTLER operates in a
slotted fashion (see Algorithm 1), where nodes decide to
transmit or receive in every slot. The corresponding transmit
probability PTX will be low in practice (e.g., 2 % to 4 % in
the evaluation), so nodes will often be receiving for multiple
consecutive slots in a row. The nodes will continuously listen
for incoming messages independent of slot boundaries and

only align TX decisions to the slot grid. This implementation
increases efficiency and avoids possible sync message misses
at the slot boundaries, as sync messages can be received at
any point in time.

In BUTLER’s design, nodes switch instantly between RX
and TX and vice versa, for example, after synchronizing to a
new reference time. However, the radio hardware requires a
turnaround time of 40 µs to execute this mode change. During
the switch, the radio is deaf and cannot receive or transmit,
effectively causing service downtime. One option to allevi-
ate this issue would be to increase the slot length Tslot by
the turnaround time, which would affect all slots. However,
the number of slots in which a node synchronizes to a new
reference time and is thereafter forced to transmit is only a
fraction compared to the overall number of slots. Therefore,
we instead opted to skip one slot when switching from RX to
TX as it is more efficient to keep Tslot unchanged.

A crucial point in BUTLER is the computation of the ref-
erence time τ̂ from the received sync message (line 17 in
Algorithm 1). The remaining duration T̂τ is part of the sync
message and t̂grid is determined based on the receive times-
tamp. This requires that the receive timestamp is equal to
tgrid of the sender, except for negligible differences due to the
time of flight of packets. We discovered that this is not the
case on the nRF52840 platform and the receive timestamp
is delayed by around 10 bit durations, depending on the data
rate of the current radio mode. For example, using a data rate
of 250 kbps and the IEEE 802.15.4 physical layer results in
a receive timestamp delay of 40 µs, which has to be consid-
ered for the computation of t̂grid. As this delay splits equally
between the TX and RX paths, we have to add 20 µs to the
slot length Tslot, which is otherwise oriented at the size of the
sync message (Fig. 3).

Variable transmit probabilities for efficiency. A probabilis-
tic and independent transmit decision is essential to make
BUTLER fault-tolerant and avoid single points of failure. As
shown in Fig. 1, the local slot grids are initially unaligned, but
increasingly synchronize as the execution progresses. At the
beginning, the chances are high that concurrent transmissions
overlap arbitrarily and violate the timing requirement Tcap of
the capture effect, which leads to a reduced communication
efficiency (i.e., a lower packet reception rate). Thus, PTX
should initially be chosen cautiously to reduce the number
of concurrent transmissions. A side effect of a lower initial
PTX is that fewer reference times will be proposed, which
decreases the overall convergence time. However, nodes al-
ready aligned to the same reference time can benefit from
the capture effect since their transmissions start concurrently
within Tcap. With an increasing number of aligned nodes, a
higher PTX improves the convergence to the final reference
time. Therefore, the optimal value for PTX varies over time
and is network-specific. A similar challenge is faced in the
Mixer protocol [13], where the transmit decisions depend on
the local node density. We tested different topologies and
found that choosing PTX = 100%

N∗2 until a node first transmits
and doubling after that provides a conservative starting point
for many topologies.

https://gitlab.com/nes-lab/butler
https://gitlab.com/nes-lab/butler


Figure 4: The FlockLab testbed with 23 nRF52840 devices.

6 Evaluation
Based on our implementation, we evaluate BUTLER in a

real-world wireless testbed. We investigate BUTLER’s behav-
ior and confirm its correctness, together with measurements
regarding performance and efficiency. Finally, we examine
the interaction between BUTLER and Mixer[13], an ST-based
communication protocol, and its impact on the communica-
tion performance. Our key findings are:

• Correctness: In our experiments, all nodes always syn-
chronize to the same reference time at the end of BUT-
LER, validating BUTLER’s correctness from the analysis.

• Accuracy: BUTLER synchronizes nodes to within ± 3 µs,
which is well below the maximum tolerable time offset
of 160 µs (i.e., size of the capture window).

• Efficiency: Thanks to BUTLER’s efficient runtime execu-
tion, the temporal overhead of synchronizing the nodes
is small and significantly below 1 % in most scenarios.

• End-to-end performance: BUTLER increases the avail-
ability of existing communication protocols without any
negative impact on the communication performance.

6.1 Experimental Settings
All our experiments are executed on the FlockLab [34]

testbed with 23 nodes deployed in an office environment as
shown in Fig. 4. The experiments were conducted during the
daytime and, thus, exposed to various sources of interference,
e.g., WiFi. Our implementation uses the nRF52840 platform
and the IEEE 802.15.4 physical layer. Using a transmit power
of 8 dBm, the nodes form a network with 3-4 hops.

Since the clock drift of the nodes is unknown and also
subject to change, we use the GPIO actuation capabilities
of FlockLab to control the timing in our experiments. This
also allows us to test larger initial offsets between the nodes
without having to run excessively long experiments (i.e., with
huge gaps between communication rounds). A final aspect
is that by using the GPIO to purposely control the timing,
we also increase the repeatability of our experiments. This
way, each node realizes a random initial offset in the range
0 ≤ tofs ≤ 50ms. The maximum offset ∆ tofs = 50ms corre-
sponds to a communication period of ≈10 min. To assess the
robustness of BUTLER, we inject artificial node faults. There-
fore, each node independently decides with a probability of
5 % not to participate in the next BUTLER execution. Further-
more, with this fault probability, the network sometimes splits
into two partitions during the experiments, which permits an

investigation of the behavior under network partitions.
In BUTLER, the sync information σ and Tτ require 1 B

each, resulting in a packet size of 10 B (see Sec. 5) and a slot
length Tslot of 335 µs. Using a few trial runs, we find that 250
slots (83.75 ms) are sufficient for BUTLER to synchronize
all nodes on FlockLab for the considered range of initial
offsets (see Sec. 6.3). We use two different values for the
transmission probability (see Sec. 5), which are PTX = 2.2%
for the time until the first transmission, and PTX = 4.3%
afterward.
6.2 BUTLER in Action

Before delving into the evaluation of BUTLER’s perfor-
mance, we look at its operation in a real low-power wireless
network. Fig. 5 depicts the behavior of each of the 23 nodes
on FlockLab during one representative execution of BUT-
LER. The beginning of a bar in Fig. 5a indicates when a
node started the execution of BUTLER. The color of the bar
indicates which proposed reference time a node currently fol-
lows. We can see that the nodes start BUTLER at different
times with ∆ tofs = 50ms. Despite these significant initial
offsets, BUTLER eventually makes all nodes follow the same
reference time, as indicated by the green bars in the figure.

Diving a bit deeper into BUTLER’s behavior in this par-
ticular run, we can see that most nodes initially have a gray
bar. This means that these nodes did not propose their own
reference time, but synchronized to the reference time of the
first sync message they received. In contrast, nodes with a
colored bar at the beginning did propose their own reference
time at some point before receiving a sync message. Overall,
there were 5 different reference times proposed in this exe-
cution, originating from nodes 3, 5, 7, 18, and 22. Node 18
started BUTLER first, a few microseconds before node 3, so
the reference time of node 18 (green) is the earliest to which
all other nodes eventually synchronize.

During the framed time interval between 15 ms to 25 ms,
many nodes synchronize to new reference times. We zoom
into this interval in Fig. 5b, where we can see the individual
slots of BUTLER. Looking at the orange slots, we can see
how the respective reference time propagates from hop to hop
through parts of the network. At around 19 ms node 11 syn-
chronizes to it. Two slots later, which is the implementation-
specific delay due to the RX-TX turnaround time of the radio,
node 11 transmits the new synchronization information (not
shown in the figure) that is then received by the nodes 12, 21,
and 22. Again two slots later, the orange reference time is
further relayed to node 10. Eventually, however, the green
reference time prevails as it is the earliest among all proposed
reference times in this particular run.

The origin of the final reference time, i.e., the node which
proposed it, is uniformly distributed among all nodes over all
runs as shown in Fig. 6, underlining BUTLER’s distributed
nature. Moreover, the experiments show that the number of
proposed reference times is related to the transmit probability
PTX . There are, on average, ≈ 4 different reference times.

The network splits into two partitions in a few runs due
to multiple node faults. We find that the nodes correctly
synchronize to the respective reference time in each parti-
tion. Composition into even more partitions would also work
seamlessly without adjusting the protocol.
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Figure 5: Time synchronization of nodes during the execution of BUTLER with colors indicating which reference time a node
follows during execution. Reference times in the legend (gray means unsynchronized) are sorted from earliest (τ18) to latest (τ5).
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Figure 7: Synchronization accuracy before and after BUT-
LER. Despite excessive initial offsets between the nodes (top),
BUTLER synchronizes all nodes to within a few microseconds
(bottom), which is far better than the required Tcap = 160µs.

6.3 BUTLER’s Performance and Efficiency
Accuracy. The main goal of BUTLER is to achieve syn-
chronicity, such that the nodes in the network are time-aligned
within the capture window Tcap. Our experiments show that
BUTLER achieves this goal and synchronizes the nodes well
below Tcap.

We use the GPIO tracing capabilities of FlockLab and
mark the times when a node starts (tofs) and finishes (τ) BUT-
LER. The accuracy is measured as the difference between
the observed values and the empirical mean in each BUTLER
execution. Fig. 7 shows the results for around 900 executions.
At the top, the distribution of the initial offsets tofs across all
nodes is as expected, since each node picks a random initial
offset between 0 and 50 ms. 1 In the lower plot we can see that
despite the excessive initial offsets, most of the nodes achieve
an accuracy of ± 2 µs, with at most 6 µs between any two
reference times. These values are well below the requirement
of Tcap = 160µs and validate the correctness of BUTLER, a
necessary precondition for achieving high accuracy.
Efficiency. We evaluate the efficiency of BUTLER by measur-
ing the time it takes to synchronize the network. To this end,
we run experiments with varying maximum offsets (∆ tofs),
and nodes choose a random initial offset in the range of
0ms ≤ tofs ≤ ∆ tofs. The time to synchronize the network
starts with the first node entering BUTLER and ends when
all nodes are synchronized to the same reference time, e.g.,
≈51 ms in Fig. 5a.

Fig. 8 shows the distribution and mean of synchronization
times for all nodes and all BUTLER executions (≈ 1000)
per experiment. We see that on FlockLab it takes on average
about 8 ms to synchronize all nodes using BUTLER for ∆ tofs =

1The accuracy exceeds −25 000 µs and 25 000 µs because it is based on
the empirical mean of each BUTLER execution, which has some variation.
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Figure 8: Time needed to synchronize all nodes for different
initial offsets. BUTLER reliably synchronizes all nodes within
a few milliseconds and the synchronization time scales well
with the clock drift.

Table 2: Temporal overhead of BUTLER for different initial
offsets and their corresponding communication periods.

Max. initial
offset (∆ tofs)

Corresponding
com. period

BUTLER
duration

Temporal
overhead

80 µs 1 s 33.58 ms 3.36 %
400 µs 5 s 33.9 ms 0.68 %
800 µs 10 s 34.3 ms 0.34 %
4.8 ms 1 min 38.3 ms 0.06 %
24 ms 5 min 57.5 ms 0.02 %
48 ms 10 min 81.5 ms 0.01 %

0ms. With larger offsets, the synchronization time converges
toward the respective ∆ tofs value. This is because many nodes
are already synchronized to the final reference time before
the last node starts BUTLER, as can be seen in Fig. 5a.
Duration and overhead. In general, the duration of BUT-
LER is the sum of two factors. One factor is the convergence
time on the specific network topology, which can be experi-
mentally explored at ∆ tofs = 0ms and is ≈ 35ms (100 slots)
on FlockLab. The other factor is the maximum initial off-
set ∆ tofs to compensate for the accumulated clock drift since
the last synchronization. Since the latter only depends on
the communication period (assuming maximum clock drift
∆ν), the duration of BUTLER can be easily adjusted to any
period during runtime; thus, BUTLER can be executed on
demand. However, for very long communication periods,
∆ tofs can become large and exceed BUTLER’s maximum du-
ration TB (Sec. 4.1). For instance, in our experiments TB = 2s,
which corresponds to a communication period of ≈ 7h. To
support longer periods, BUTLER would have to be executed
in-between to reset the accumulated clock drift.

In most scenarios, BUTLER only needs to be executed
once per communication period, so we report its temporal
overhead in relation to the period. Our results listed in Ta-
ble 2 demonstrate that BUTLER is a lightweight mechanism
with very little to negligible temporal overhead, enabling
easy integration with communication protocols as BUTLER
does not constrain their execution. Moreover, the temporal

overhead decreases as the initial offset and associated commu-
nication period increase. For example, at a communication
period of ≈3 s, the temporal overhead drops below 1 %, with
only 0.01 % at a period of 10 min. However, the increased
availability of BUTLER does come at the cost of increased
energy consumption, as the execution time of BUTLER could
otherwise be spent in sleep mode.

6.4 Reality Check: Making an Existing Proto-
col Available Through BUTLER

After investigating BUTLER’s performance and efficiency
in isolation, we now turn to the target use case where BUTLER
is used to increase the availability of a (possibly existing) low-
power wireless communication protocol.
Scenario and settings. As an example communication proto-
col, we use Mixer [13], which has recently been demonstrated
to efficiently support distributed control scenarios [21]. How-
ever, Mixer provides no availability, often a key requirement
in control applications, as it relies on a single initiator node
that starts the many-to-many packet exchange. To overcome
this problem and enable the use of multiple initiators in Mixer,
we let BUTLER run before every communication round to syn-
chronize the set of initiators. To be able to compare different
settings and reproduce our results, we use a fixed set of two
initiators located at opposite ends of the FlockLab testbed and
also refrain from injecting artificial node failures.2

We compare the performance of Mixer with and without
BUTLER for different initial offsets between the two initiators.
Compared to the previous experiments, we use much smaller
initial offsets here to show that multi-initiator Mixer requires
help from BUTLER already at short communication periods.
However, BUTLER can be used efficiently with Mixer irre-
spective of the communication period and resulting initial
offset. For each setting, we conduct an experimental run that
involves around 500 communication rounds. We also run
the original Mixer with a single initiator as a baseline for the
communication performance. In every communication round,
each node initially has a 16 B message that it needs to share
with all other nodes in the network during the Mixer round, so
that eventually every node has all 23 messages. We consider
two key metrics: Latency, which is the time it takes for a node
to receive all messages in a round, and reliability, which is
the fraction of received messages per round. Note that latency
does not include BUTLER’s execution time because BUTLER
finishes before the scheduled communication round starts.
Results. Fig. 9a shows the latency distribution with single-
and multi-initiator Mixer for different initial offsets; markers
indicate the 1st and 99th percentiles. We can see that without
BUTLER, the latency increases significantly by up to 2.8×
for increasing initial offsets. When instead extending it with
BUTLER, the latency of multi-initiator Mixer remains as low
as for the original Mixer with a single initiator while provid-
ing higher availability. This is thanks to BUTLER’s ability to
accurately synchronize the initiators, which becomes an abso-
lute necessity already for an initial offset of 160 µs to achieve

2We note that in order to maximize availability a larger set of initiator
nodes randomly and dynamically chosen at runtime should be used, which is
straightforwardly supported by our implementation.
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Figure 9: Communication performance of Mixer using multiple initiators with and without BUTLER.

high performance. Thus, the experiments also confirm our
assumption about Tcap for correctness in Sec. 4.1.

Fig. 9b shows the reliability of single- and multi-initiator
Mixer for different initial offsets when we limit the length of
the multi-initiator Mixer rounds to the time needed by single-
initiator Mixer (about 300 ms). This scenario is representative
of typical constraints found in control applications, where in-
teractions between distributed sensors and actuators must be
completed within hard real-time deadlines to match the dy-
namics of physical processes [2]. Looking at Fig. 9b, we see
without BUTLER the mean reliability decreases dramatically
by up to 30 % as the initial offset increases. With BUTLER,
the reliability remains unchanged and always above 99.9 %.

In summary, these results demonstrate that BUTLER effec-
tively solves the problem of clock drift when using multiple
initiators. BUTLER increases the availability of low-power
wireless communication without sacrificing performance.

7 Related Work
BUTLER is the first work to address the availability prob-

lem of ST-based communication protocols. However, the un-
derlying concept is closely related to the existing literature on
time synchronization. Most time synchronization algorithms
aim to provide an accurate, globally shared, and constantly
available time base to all nodes in the network. While this is
a powerful synchronization service that is essential for some
applications, it needs to run periodically, and the associated
overhead in terms of energy, time, and wireless bandwidth
is very high. In fact, to distribute the initiator role among
multiple nodes, which is what BUTLER aims for to increase
availability, the nodes do not need a globally shared time base
that is maintained for the entire lifetime of the system: all they
need is to be able to perform a coordinated action [17]. This
is also known as synchronicity [35] and can be achieved with
less effort compared to full-fledged time synchronization.

Many time synchronization protocols, including TPSN [9],
FTSP [23], Glossy [8], PulseSync [19], and TATS [20], use
one dedicated node as a time reference for the entire network.
Generally, these algorithms achieve excellent synchronization
accuracy but are not fault-tolerant, which is a prerequisite for
high availability. Furthermore, they often rely on topology
information, causing instability in dynamic networks. The

single node providing the reference time is also insufficient
if the network splits into several isolated partitions. BUTLER
overcomes these issues by adopting a fully decentralized
approach that does not rely on topology information.

Over the years, several distributed synchronization proto-
cols have been developed to mitigate centralization issues,
such as RFA [35], DCTS [27], ATS [26], MTS [12], and
MACTS [30]. These protocols do not rely on special nodes
and are thus more robust and versatile than their centralized
counterparts. The downside, however, is that these algorithms
typically require a significant amount of time to synchronize
the network, ranging from tens of seconds to multiple min-
utes. By contrast, BUTLER needs only tens of milliseconds
to synchronize an entire network to within a few microsec-
onds, thus substantially saving energy, time, and wireless
bandwidth. The difference is that in most synchronization
protocols, the nodes converge, e.g., by averaging the local
clocks in an iterative process, which is needed to find a sta-
ble global time but requires a large number of messages to
determine and account for the different clock drifts [30]. Fur-
thermore, nodes that lose their state, e.g., due to a failure,
potentially require all nodes to converge again. BUTLER does
not adjust clock drift and uses the natural order of proposed
reference times, requiring only a few messages to achieve
the goal of synchronicity. BUTLER’s short duration also sim-
plifies the integration with communication protocols, which
can be difficult with existing time synchronization protocols
due to their significant overhead and the need for periodic
executions.

8 Conclusion
With BUTLER, we have presented the design of a new

dependable low-power wireless communication scheme that
entirely eradicates any single point of failure. We first iden-
tify the common restriction that reliable time synchronization
presents a prerequisite for ST-based protocols that could pre-
viously only be obtained using a dedicated node. Thereafter,
we propose the design of a distributed synchronization mecha-
nism that can extend existing protocols at negligible temporal
overhead. We show through formal analysis that BUTLER
permits tight time synchronization sufficient for ST despite
node failures and network partitions. To verify our results, we



build a proof-of-concept implementation and extend an exist-
ing protocol with BUTLER so that its performance remains
virtually unchanged while its last vulnerability is eliminated.
We thereby demonstrate that a truly fault-tolerant low-power
wireless protocol is feasible that can fulfill the high depend-
ability requirements of present and emerging applications.
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Elapsed time on arrival: a simple and versatile primitive for canonical
time synchronisation services. International Journal of Ad Hoc and
Ubiquitous Computing, 1(4):239–251, 2006.

[18] O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale. In
Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems, 2013.

[19] C. Lenzen, P. Sommer, and R. Wattenhofer. Pulsesync: An efficient
and scalable clock synchronization protocol. IEEE/ACM Transactions
on Networking, 23(3):717–727, 2015.

[20] R. Lim, B. Maag, and L. Thiele. Time-of-flight aware time synchro-
nization for wireless embedded systems. In International Conference
on Embedded Wireless Systems and Networks, pages 149–158, 2016.

[21] F. Mager, D. Baumann, C. Herrmann, S. Trimpe, and M. Zimmerling.
Scaling beyond bandwidth limitations: Wireless control with stability
guarantees under overload. ACM Trans. Cyber-Phys. Syst., Nov 2021.

[22] F. Mager, D. Baumann, R. Jacob, L. Thiele, S. Trimpe, and M. Zim-
merling. Feedback control goes wireless: Guaranteed stability over
low-power multi-hop networks. In ACM/IEEE International Confer-
ence on Cyber-Physical Systems, 2019.
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